
AD-A147 964 FUNDAMENTALS OF COMPUTER PROGRAMMING FOR ENGINEERS(U) 1/2
DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT
CENTER BETHESDA MD P H ROTH OCT 84 DTNSRDC-84/862

UNCLASSIFIED F/G 5/9 N

1111.=

I"I

L. It~I

E 1.1II I125 1 .~4 1111 .6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

%

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNWRDC
COMMANDER 0

TECHNICAL DIRECTOR
01

OFFICER-IN-CHARGE OFFICER-IN-CHARGE
CARDEROCK 0 ANNAPOLIS05 O

SYSTEMS
DEVELOPMENT
DEPARTMENT

11

SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS

DEPARTMENT
15 16

STRUCTURES COMPUTATION;

DEPARTMENT MATHEMATICS AND
LOGISTICS DEPARTMENT

17 s16

SHIP ACOUSTICS PROPULSION AND

DEPARTMENT AUXILIARY SYSTEMS
DEPARTMENT

19 27

SHIP MATERIALS CENTRAL
ENGINEERING INSTRUMENTATION
DEPARTMENT 2 DEPARTMENT28 29

NoW-OTHSRoC 06021 12-60

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whmen Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

DTNSRDC-84/062

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

FUNDAMENTALS OF COMPUTER PROGRAMMING Final

FOR ENGINEERS s. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Peter N. Roth

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

David W. Taylor Naval Ship Research
AREA & WORK UNIT NUMBERS

and Development Center

Bethesda, Maryland 20084

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
October 1984

13. NUMBER OF PAGES

119
14. MONITORING AGENCY NAME & ADoRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS& DECLASSIFICATION/DOWNGRADING

SCHEDULE

6I. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

*". 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEIY WORDS (Continue on reverse side if necessary anld Identify by block number)
Programming, fundamentals, computer, ratfor, FORTRAN, Pascal, C, basic,

debugging

(
20. ABSTRACT (Continue on reverese lde I necessary and Identify by block number)

'Q This document teaches engineers how to write computer programs

independent of any specific programming language.

It shows the four principles of programming and how to use them to

build computer programs in English. It shows how to translate the English

programs into an appropriate engineering computer programming language:

ratfor, Pascal, C, FORTRAN77, FORTRAN66, or BASIC.

It also provides a programming checklist and a debugging guide. -

DD IS 1473 EDITION O NOV 5 OBSOLETE

S 'N 0102- LF 0D1 6601S UNCLASSIFIEDSN 102 L-01-601SECURITY 'CLASSIFICATION OF THIS PACE (WhenData 60tdrd)

.17t

TABLE OF CONTENTS

*-ADMINISTRATIVE INFORMATION 1

INTRODUCTION 1

1. THE FOUR PROGRAMMING PRINCIPLES 4

2.1 Data, Constants, and Variables.......... 6
2.*2 Types 6

2. 3 Expressions. 6
2.4 Data Organizations..................... 6
2. 5 Variable Names. 9

3. THE THREE PARTS OF EVERY PROGRAM 11
3. 1 The Initialization. 1 11
3.2 The Computation 12
3.3 The Clean-up......... 12

4 . THE CONSTRUCTS. 13
4.*1 Boolean Logic 1 3
4.2 Form of Boolean Expressions 13
4.3 The Assignment Statement 14
4.4 The Conditional Construct 16
4.5 The Alternative Construct 0.... 17
4.6 The Multiple Choice Construct 18
4.7 Iteration 20
4.8 Altered Loops 25
4.9 Construct Summary 28
4.10 Which Construct? 29
4.*1 1 Examples 30
4.12 Solutions to the Examples 33

5. GETTING YOUR PROGRAM TO RUN 36

6. THE PROGRAM CHECKLIST......................... 38
6.1 Data Reference Errors 38
6.2 Data Declaration rorr... rs..........38
6.3 Computation Errors 38
6.4 CompioonErrors 39
6.5 Construct Errors...................... 39

*6.6 Interface Errors 40
6.7 Input/Output Errors 41
6.8 Miscellany 41

7. DEBUGGING 43

7.1 Think........................... 43
7.2 If You Reach An mpasse 43
7.3 Where TheIsOelsug...... 43

7.4 Fix The Error 43
"7.5 Bebuing 43

7.6 Faulty Bug Repair 43
7.7 Use Debugging Tools......*.......... 44
7.8 Avoid Experimentation..................... 44
7.9 Use an Octal or Hexadecimal Dump 44

8. THE LANGUAGES 15
8.1 Languages Included 115
8.2 Languages Excluded 0 416

9. RA F .. ooooo ooo .oo .e ooo....o .. ooo. . ooooo.. ..eo

9.1 Variable Names............................. 18
9.2 Boolean Expression...... 9
9.3 Assignment Statement....................... 19
9o Condt onati l o.............ot....o.......... 4

9.6 Multiple Choice............................ 50
",,9.7 Wh l 50

9.8 Repeat-Until............................... 50
9.9 Determinate Iteration...................... 51
9.10 Altered Loops 51
9.11 Generalized Iteration...................... 52
9.12 ratfor Summary.... 53
9.13 Program Header............................. 5
9.1 Running a ratfor Program................... 54
9.15 Examples 55

10o PASCAL ooo 58
:"10.1 Variable Naes58

10.2 Boolean Expression......................... 59

10.3 Assignment Statement....................... 59
,-.10.4 Conditional 59

*"10.5 Alternative................................ 60
10.6 Multiple Choice............................ 60
10.7 While..... o 61
10.8 Repeat-Until............................... Until 61
10.9 Determinate Iteration.................... 61
10.10 Altered Loops.............................. 62
10.11 Pascal Summary . 6
10.12 Program Header...... 65
10.13 Running a Pascal Program 65

"•°o10o14 Examples 66

11.1 Variable Names 69
11.2 Boolean Expression...... 69
11.3 Assignment Statement....................... 70
11.4 Conditional*............................ 70
11o5 Alternativeo 70
11.6 Multiple Choiceo 71

11.7 While...................................... 72
11o8 Repeat-Until- 72

.v

11.9 Determinate Iteration 72
1 1.*10 Altered Loops.. . .. * * ** ** ** 73

11.*12 Program Header 75
11.13 Running aC Program................ 75
11.114 Examples 76

12. FORT RAN77 79
12.*1 Variable Names. 79
12.2 Boolean Expression............ 80
12.3 Assignment Statement 0........ 81
12.14 Conditional o 81
12.5 Alternative. 81
12.6 Multiple Choice 81
12.7 Wlhile...................... 82
12.8 Repeat-Until 82
12.9 Determinate Iteration..o......... 82
12.10 Altered Loops* a 83
12.11 FORTRAN77 Summary 814
12.12 Program Header 85
12.13 Running aFORTRAN77 Program 85
12.*14L Examples.. o o 86

13. FORTRAN66. o ev e 89

1 3. 1 Variable Names. o 89
13.2 Boolean Ex prsso e s.......i...... 90
13.3 Assignment Statement #........ 90
13.14 Conditional.. *........... 0. 91
1 3.5 Alternative o 91
13.6 Multiple Choice."..... 0 91
13.7 Whil e.................... 92
13.8 Repeat-Until... 92
13.9 Determinate Iteration................. 93
1 3-.10 Altered Loops 94
13.11 FORTRAN66 Summary....... 95
13.12 Program Header...................... 96
13.13 Runninga FORTRAN66 Program 96
1 3.114 Examples 97

14. BASIC........................ 100
14L. 1 Variable Names 100
14.2 Boolean Expression 101
14.3 Assignment Statement. o... 102
14.14 Conditional0....102

114.6 Multiple Choice.* 103
14.7 While 0.0........................ 103
14.8 Repeat-Until..................... 103

*14.9 Determinate Iteration..................... 103
14.*10 Al tered Loops _..... 1014
14.11 BASIC Summary 105
14.12 Program Header........................... 106

-V-

14.13 Running a BASIC Program 106
141.114 Examples 107

15. ACKNOWLEDGMENTS 110

16. REFERENCES 11

17. GLOSSARY -.. 1 12

18.- INDEXo.oeaa....... 115

DTIC
ELECTE

SO2 6 984
B

*bi--

jklai an/o
By... .. .

Dist Spcta

-v

- Vi -

ABSTRACT

This document teaches engineers how to write computer programs independent of

any specific programming language.

It shows the four principles of programming and how to use them to build corn-
puter programs in English. It shows how to translate the English programs into
an appropriate engineering computer programming language: ratfor, Pascal, C,
FORTRAN77, FORTRAN66, or BASIC.

It also provides a programming checklist and a debugging guide.

ADMINISTRATIVE INFORMATION

This document was prepared using Structures Department overhead funds.

INTRODUCTION

I presume you to be an engineer who wishes to write programs to solve engineer-

ing problems. You may already have had some experience with computers, but you
don't necessarily wish to become a 'computer expert.' Unfortunately, use of
modern computers requires some dexterity in at least four areas:

- you should have some acquaintance with your computer's 'operating system'
(the program that lets other programs run);

- you must be able to wield a text editor (the program that lets you type
* programs and data into your computer);

- you have to be expert enough in your technical field to know that you need
to do some computing;

- you have to express the solution to your technical problem in some program-
ming language.

Operating systems and text editors have been addressed in other documents (see
[Roth831' and [Roth82l), and I can't begin to teach you your field, but perhaps

* I can help you with the programming process itself.

Programs can be written by applying a few simple principles. This text teaches
these simple principles in a language you already know, i.e., English. I will
further presume, however, that you are trying to become familiar with the syntax

d, % Pof one of the programming languages illustrated here.

Over 85% of the programs in the world are less than 200 lines long, so you will

probably spend most of your programming time writing programs of this size.
Development of larger programs is a different story because you need a well-

*References are indicated by the first four letters of the author's name
followed by the year of publication, in brackets. A complete listing of
references is given on page 111.

INTRODUCTION

developed strategy to manage the effort, in addition to knowing the principles
of programming. In this slim text, however, we will concentrate primarily on
the basic programming principles (which are applicable to programs of aEy size)
and postpone discussion of the management of large program development to a
later volume. (Certainly, you must be able to write a small program before you
can write a big one.)

The text is organized as follows: The Four Principles of' program construction
are demonstrated in Chapter 1. Chapter 2 discusses the passive parts of' coam-
puter programs: data. Chapter 3 describes the Three Parts of' every program.
Chapter 4, which is fairly long, describes The Constructs (from Control
structures) with exercises to test your learning as you go. Chapter 5 describes
the process of' getting your program to run, and Chapter 6 gives a checklist to
help ensure that your program is in the best possible condition before (and
af'ter) you run it. Chapter 7 is a short lesson in correcting your program when
it doesn't run correctly (yes, even with all of' the 'good stuff" in the early
chapters, things still go wrong). Chapter 8 contains capsule reviews of' several
programming languages and reveals my not-very-well-hidden bias for certain
languages. Chapters 9 through 141 are each devoted to a specific programming
language; there is not enough detail presented here to make full use of any
language, but enough to get you going successfully. Following the list of'

references, I have included a small glossary of' those terms having special jar-
gon value to programmers.* I therefore recommend that you read Chapters 1

* through 6, skim 7 and 8, and select the programming language chapter(s) to read
per your own taste.

I have a few other objectives for writing this text. First: algorithms are
often published in a language bearing great resemblance to Pascal and Algol. It
is desirable to be able to read these algorithms, and perhaps convert them into
other languages. By presenting the principles of programming here in several
languages, I hope to make it easier for you to read and understand these algo-
rithms.

Second: (a confession) I am comfortable using several kinds of large mainframe
oomputers because I am familiar with the way they behave. I know how to use
several text editors and many other software tools, having invented several of'
my own.

* I noticed that I was extremely reluctant to program the Texas Instruments TT59
'. ' programmable pocket calculator. I examined my motives for putting off1 working

with the machine, and arrived at the following list of technical and emotional
issues:

-The user manual is thick. ('You mean I have to read all this to write a
crummy program?')

-There aren't many experts around for me to talk to when I run into trouble,
or, they would be busy with their own work (which I would be disturbing); I
was on my own.

0 If you don't understand something on first reading, skip over it. Later
text should make it clear.

-2-

* INTRODUCTION

- I didn't know what response the machines would make to my commands; conse-
quent'y I didn't know what questions to ask when something 'went wrong.'

- My program wouldn't work because I overlooked something very simple; I
'1 would therefore appear to be stupid, and be laughed at.

- Work with the machines is tedious. There are no software tools to help
program these devices.

- I don't have time to learn how to use the machine. And running speeds are
very slow.

- I don't believe programmable pocket calculators are effective, so I did not
want to become an expert in programming them.

You may have similar apprehensions about using mainframe computers. I believe
my excuses (the ones with emotional content) stem from the 'fear of the
unknown.' So, in addition to the reasons mentioned above, I wrote this to remove
as many unknowns as possible, and thereby reduce the fear level.

Finally: remember that if you can afford to write a couple of drafts of a report
or letter, you should allow yourself the 'luxury' of doing two drafts of a pro-
gram. Be prepared to throw the first draft away; you will anyway. Relax and
enjoy yourself.

-3-

WV i!q%* . %' * .

07

1. THE FOUR PROGRAMMING PRINCIPLES.

Bef'ore you write any program, you should ask yourself' three questions:

- What is this program supposed to do?

- Has someone else already written one to do this?

- Can several existing programs be hooked together to produce the same
ef'fect?

You should be able to answer the first question in one sentence. If' you can do
what you want to do faster with a pencil and paper, you probably don't need a-
program.

If' the answer to the second or third question is 'yes,' you can often save your-
self' a lot of' work by using an existing program instead of' writing a new one
(you can also skip reading this text). Assuming that a program doesn't exist to
do what you want, or an existing one doesn't do it the way you want it done, and
there's no one around who can write it f'or you, you may decide to compose your
own. Now you need to know something about programming.*

But you don't need to know a lot! In f'act, you need only the following Four

Principles:

- Programs 'operate on' data of' specif'ic types (Chapter 2).

- Programs have at most three Parts (Chapter 3).

- Programs are built f'rom at most six Constructs (Chapter 4).

- Half' of' the constructs may be altered in at most two ways (Chapter 4).

When you apply these principles, you can compose your program in English (or the
reasoning language in which you do your other thinking) and then translate the
'English' program into the programming language of' choice. The closer the tar-
get language is to the way you think, the easier the translation will be.
Of'ten, the choice of' programming language is predetermined, because you are

* modif'ying a program which already exists, or you are writing the program f'or
someone else.

* . My own practice is to think with a pencil and paper,** making notes in a mixture

of' English, ratf'or, and Pascal, which I then translate completely into the tar-
get programming language. Although some panache is demonstrated by developing
programs on scraps of' paper, envelope rears, and irregular corners of' slates, it

is advisable to keep the notes you make when you develop your program. These

0 Notice that the initial ef'fort in writing a program is to avoid writing a

program!

00 Rather than erase errors, I f'ind it pref'erable to cross them out and rewrite

correctly. The crossed-out stutff provides a trace on the path of' my

thinking, which is sometimes helpf'ul to have when debugging time comes.

THE FOUR PROGRAMMING PRINCIPLES

* will help you when your boss insists that you docuent your work in a more
appropriate form, such as a report. It is easier, of course, to write the
users' manual for your program before you write the program itself.

Efficient' programs use little computer time and little computer memory. But:
*computer time and memory are in most cases just too cheap to worry about! Your
*time is infinitely more valuable than silicon time. Thus, efficiency is that

which makes your life 'easier.' Paraphrasing Boudreau [Boud7l], "A big, slow,
correct program is better than a slick wrong one." So get it right before you
make it 'fast.' As you gain experience using the four Principles, you will
notice that you are producing programs which are not only correct, but readable,
understandable, and quite fast, as well.

The action "translating completely into the target programming language" is
called "coding." Because translating incomplete thoughts into a programming
language is quite difficult, please regard the following maxim:

THE SOONER YOU START CODING,
THE LONGER IT WILL TAKE TO FINISH YOUR PROGRAM.

* When the translation from English to programming language is complete, the pro-
gram can be typed into a computer (see [Roth82l for help in this area), and com-
piled and executed using the procedures of rRoth831. Each of the language
chapters in this report also shows how to do it.

----- 7~W T, .0- N7.* -. 2.

2. DATA

2.1 Data, Constants, and Variables

Data are the objects on which computer programs operate.

Constants are items of data which do not change.

Variables are things which may assume the values of different constants.

2.2 Types

We can assign values to, and examine the values of, variables according to the-
tyeof the data.

The data types useful for the majority of straightforward engineering programs
- are:

integer Numbers which have no fractional part. Most often used to count
things. For example, the number of keys on a piano is an integer con-
stant (88). A variable used to store this data type is called an
'integer variable.'

real Numbers which may have a fractional part. Useful for representation
of physical quantities like mass, density, thickness, location in

- . space, etc. The ratio of the circumference to the diameter of a cir-
cle is a real constant: 3.14159.... A variable used to store this
data type is called a 'real variable.'

Boolean (or logical). An item of Boolean data may have only one of two possi-
ble values: 'true' or 'false.' This type allows control of programs
through logic. It is 'true' that 2.0 is greater than 1.0. A variable
used to store a Boolean constant is called a %Boolean variable.'

character Used to read and write the character set available on the machine.
These are typically the lower case letters, the upper case letters,
the digits, the space, the tab, special symbols such as 1,@ , etc.
A variable used to store this data type is called a 'character vari-

* able.'

2.3 Expressions

Each of the types Is defined for an expression in a language. A valid expres-
sion is a combination of constants, variables, and symbols which conforms to the
syntax of the language. You can assign the value of an expression to a variable
of the appropriate type via the assignment statement of the language (more on
this later).

2.14 Data Organizations

The data organizations most useful for straightforward engineering programs are
* the simple variable, the array, and the file.

-6-

DATA Data Organizations

2.41.1 The Simple Variable A simple variable is a thing to which you can assign
values according to its type, compare its value with variables or expressions of
the same type, and write the value of the var'iable (so you can see the results

* of assignments and comparisons).

All computing with variables is done in accordance with the variable's type.
For example, we can assign "position on the x-axis" to a variable we name X of
type real. Or we can assign the truth of the expression "X is greater than 6.1"
to a variable B of type Boolean.

2.41.2 The Array An array is an ordered, determinate number of variables. You
should think of an array as a single entity, even though it may have many parts.
For example, the direction cosines of a vector form a single array of three real
data items. We might name this array DIRCOS.

The generalization from simple variable to array suggests 'an array of arrays,'
Ian array of arrays of arrays,' etc. For example, we can consider the location
of a point in space to be given by the three real coordinates of the point: X,
Y, and Z (the names of three real simple variables). Or, we can consider the
location to be given by an array which contains three real variables. Suppose
we name this array %X.' Then X(1) could be the 'x' coordinate, X(2) the %y'
coordinate, and X(3) the 'z' coordinate.

Further, if we have 10 points in space, we can conceive of them as an array of
-: arrays. Suppose we name the array COORD. Then we need 10 'places' in the array

(one for each point). In each of the 'places' we need an array of three real
variables (one for each axis). So,

COORD(1,1) might be the 'x' coordinate of the first point,

COORD(11,2) could be the 'y' coordinate of the fourth point,

COORD(7,3) could be the 'z' coordinate of the seventh point.

In the COORD array, therefore, the first 'subscript' gives the number of the
-. point and the second gives the axis of measurement. The important thing to note

is that the array concept allows us to deal with a lot of numbers with a single
name.

Note that although each item of an array can be of any type (the example above
used an array of type real), the subscripts are always of type integer. TRy
using integers in control structures, we can process arrays very quickly and

V with great economy of language.

* , 2.4.3 The File A file is an ordered collection of variables which may be of
*unknown length. To indicate a file, I will use a name surrounded by brokets:

<input> is to be read 'the file whose name is input,' or simply 'the input
file.' Examples:

< input> to a finite element program is an unknown number of 'lines,' each
line being an array of 80 variables of type character.

'-7

NN

Data Organizations DATA

-This report originated as several files on a UNIX* system (at the time I
first wrote this sentence, the files were 2306 lines long, and had 9020
'words' made up of 51560 characters).

Files are used for input and output to computer programs. Although the 'memory'
of a computer is indeed finite, the files available to a program are conceptu-

* ally infinite. This allows us a handy place to temporarily save large numbers
* of simple variables and arrays which would exceed the capacity of the computer's

memory.

Because of' the possibility that files can be very long, programming languages
usually provide access to files through a "window;" that is, you only get to see* a little of it at a time. The shape of this window is greatly dependent on the
operating system and the language being used.

2.14.4 Other types and organizations Although the types and organizations men-
tioned above are satisfactory for the vast majority of the programs which you
will write, the list is incomplete. FORTRAN, for example, provides the addi-
tional types

*complex A variable which has a 'real' and 'imaginary' part; both of the parts
are represented internally as 'reals'.

*double A variable which has twice the precision of a 'real.'

Other languages provide other types and organizations which include the SET, the
RECORD, the TREE, etc. To use these in a language which does not explicitly
provide them requires ingenuity in mapping the structures. You are limited only
by the limits of your imagination, and the capability to express your idea in
terms of' a known language running on an available machine.

* The best treatment of data types and organizations is given by [Wirt76], which
is based on the Pascal language. In FORTRAN, rDay721 and [Berz71i are quite
good.

*UNIX is a trademark of Bell Laboratories.

DATA Variable Names

2.5 Variable Names

"Don't stand there chattering to yourself like that,"
Humpty Dumpty said, looking at her for the first time, "but
tell me your name and your business."

"My name is Alice, but--"
"It's a stupid name enough!" Humpty Dumpty interrupted

impatiently. "What does it mean?"
"Must a name mean something?" Alice asked doubtfully.
"Of course it must," Humpty Dumpty said with a short

laugh: "my name means the shape I am - and a good handsome
shape it is, too. With a name like yours, you might be any
shape, almost." [Carr963

Taking the Humpty Dumpty hint, we will wish to name variables in such a way that
their names give us a clue to their essence. Because English is our language,
we have no limitations on the length or style of a variable name. What is
interesting about English (or mathematical) variable names is that they are
assigned in a context which preserves their meaning. Thus, when we say some-
thing like, 'Let P be a point in space,' then the name 'P' somehow is seen to be
tied to the word 'point.' Of course, a second point would need another name to
make it distinct from P. Mathematicians will usually try to pick a name that is
somehow close to the first name, and yet obviously different; perhaps 'Q' (it is
near' P alphabetically). We note that P and Q are short names because we usu-

ally prefer not to write very much. At the same time, names (i.e., words) which
are longer than eight characters are usually at least three syllables, which
makes them hard to read and harder to type.

On the other hand: a textbook which defines 'P' on page 2, say, and never
reminds us that P is a point, is going to be a difficult text to refer to.
That's why mathematicians are always redefining things for their readers; con-

* text is usually limited to about a page or two. You should cultivate the same
* habit in your programs, because programs are not always read from beginning to
* end; one enters them at any place suitable to the need at hand. It is therefore

important that the program reader be able to get a fair understanding of what is
going on from the immediate context.

* Thus:

VARIABLE NAMES SHOULD

BE OF 'REASONABLE' LENGTH.

'Reasonable' means from one to eight characters in length (maximum length of
twelve characters), or redefined with commentary at fairly frequent intervals in
the program text. In the 'Let P be a point in space' case, my practice would be

* to name the variable P in a program of less than 50 lines, and name it POINT in
any program of 50 lines or larger.

The creative act of naming variables is difficult! A thesaurus can be quite
helpful.

. o*:.

Variable Names DATA

* Exercise: Obtain someone's program (preferably one of your own that is at least
6 months old), and take a look at the variable names. Can you tell what they
are? Why or why not?

-10-

3. THE THREE PARTS OF EVERY PROGRAM

Computer programs have three parts:

- The Initialization.

- The Computation.

- The Clean-up.

3.1 The Initialization

*This program part is that in which we get ready to compute. It includes

the program header line,

the declaration of variable data types,

the opening and positioning of files,

the setting of default values, and

the setting of initial conditions.

- On some computers, the operating system itself provides much of the program ini-
tialization. The pieces most often under your control are the declaration of
variable type, and the initialization of variables to some value. The declara-

-tions are much like the statements preceding a mathematical proof ("Let f be a

smooth continuous function in the domain D with f' the first, and f" the
second, derivative of f with respect to distance in D").

*Initialization of a variable to a specific value uses the 'assignment state-
ment,' which 'assigns' a value to a variable. Because the form of the assign-
ment statement varies from language to language, each language chapter includes
a section defining this statement.

The initialization is usually the last part of a program to be completed.* This
-. is because you don't know what the initial values should be when you begin com-
E position of the program. Hence, initialization can also be the hardest part of
- a program to write.

* hsis comparable to the way in which a report or book is written: the last
parts to be written are the introduction and the abstract.

-11-

* *The Computation THE THREE PARTS OF EVERY PROGRAM

3.2 The Comutation

This is the program part which does your work. It is the part where you will
use The Constructs.

- 3.3 The Clean-up

* In this part of the program, we save those things which we need to keep, throw
away the garbage, and exit from our computations gracefully (if possible).

On many computers, the entire clean-up is performed by the operating system.

-12-

* .. ~S.- ' % % i. % '' -- .*.- ** S. ~ * ' * * *. S. V * * '. * S.

.**~~~~7 -. 77.'* * ..- 7 . *~- * '

4. THE CONSTRUCTS

In this fairly long chapter, I present The Constructs both in English and graph-
* ically.

* 4.1 Boolean Logic

* The facility for logic built into programming languages is a mechanical imple-
mentation of Boolean logic. Boolean expressions are those which allow us to

*test truth and falsity according to the rules of logic formalized by Boole. A
* Boolean expression may have only one of two values: TRUE or FALSE.

4I.2 Form of Boolean Expressions

In the following, X and Y are variables or expressions of the same type, and
each 'Boolean expression' will be either TRUE or FALSE.

X is greater than Y.

X is greater than or equal to Y.

X is equal to Y.

X is not equal to Y.

X is less than Y.

X is less than or equal to Y.

The Assignment Statement THE COIKSTRiUCTS

4.3 The Assignment Statement

The actual activity of a program is performed by statements which conform to the
language syntax. A statement in a language will be represented here in the form
'S, 'S1, '952', etc.

One of the most important statement types is the assignment statement, which has
the form

X ao E

in which 'X' is a variable, 'ao' is the assignment operator (usually a symbol
composed of 1 or more characters), and 'E' is an expression of the same type as

* . X'. One reads an assignment statement: "the current value of 'X' is replaced
with the value 'E'" or, more simply, "'X' becomes 'E'." This is obviously dif-
ferent from the statement "'X' equalb 'E'." The latter is a *Boolean expression'
which may assume only the value TRUE or FALSE; the former is called the 'assign-
ment statement' because the value of an expression is assigned to a variable.*
Note: execution of the assignment statement destroys any previous value of X!

* We emphasize that the assignment statement is not the same as the 'Boolean
expression 'X equals E'; the assignment statement is an action, whereas the
Boolean expression is an assertion.

For example, let's assume that the integer variable X has the value 1. Then

X equals X + 1

is false, whereas

X becomes X +1

assigns the value 2 to X.

A statement will be diagramed

where the arrow into the box indicates that control is passing to the statement
'S.' When the statement 'S' has completed its action, control passes to the
'next' statement to be executed; this is represented by the arrow out of the
box.

* The expression may be as simple as another variable, in which case we say
that one variable is copied into another.

_114-

* THE CONSTRUCTS The'Assignment Statement

In general, the notation "S' may be read as 'n statements in sequence' where "n"
is greater than or equal to 0. Thus,

may actually represent something like

Most contemporary computers are sequential machines, which means that statements
are executed in the order in which they are accessed. Thus, if we write the
statements Si, followed by S2, followed by 33, the statements will be executed
in the order S1, S2, S3 unless we somehow change this order. This 'changing' is

- done with The Constructs. Please note that each of The Constructs is also a
"statement,' and may be hooked together just as any of the 'other' statements of
a language are.

I°

I.

, 15

*The Conditional Construct THE CONSTRUCTS

*4. The Conditional Construct

The Conditional construct permits computations to be performed only if certain
conditions are met. Given that B is a Boolean expression, the Conditional con-

*struct has the form

If B,
then S.

For example:

If "it is raining"
then "carry an umbrella."

In this example, the Boolean expression B is: "it is raining." This expr'ession
may be TRUE or FALSE. The action to be performed, S, is "carry an umbrella."

The Conditional construct may be diagramed

FALSE

* where the 'if' part of the statement is represented by the B inside the diamond.
If 'B' is true, then the true path is taken, and 'S' is done. If 'B' is false,
then the false path is taken.

THE CONSTRUCTS The Alternative Construct

4.5 The Alternative Construct

When there are alternative actions which may. be performed, we can use the Alter-
native construct. Given that B is a Boolean expression, then the Alternative
construct has the form

If B
then Si;

else,
S2.

For example:

If "it is raining"
then "carry an umbrella;"

else,
"lower convertible top."

Note that these actions are mutually exclusive. That is, "if it is raining"
then the only statement which is executed is "carry an umbrella." "If' it is not
raining," then the only statement which is executed is "lower convertible top."

The Alternative construct can be diagramed

IS

-17- S

211.

The Multiple Choice Construct THE CONSTRUCTS

4.6 The Multiple Choice Construct

Out of a number of possibilities, we may wisb to select the appropriate one and
do the statement(s) associated therewith. For example:

In case of
rain: "carry an umbrella"
snow: "wear parka and hat"
hail: "stay home"
tornado: "goto cellar"
sunshine: "play tennis"

where only one of the choices is elected. Thus, "goto cellar" and "play tennis"'
are mutually exclusive options.

Another way of expressing this construct is with a succession of Alternative
constructs:

if "it is raining" then
., "carry an umbrella"

else if "it is snowing" then
"wear parka and hat"

else if "it is hailing" then
"stay home"

else if "it is tornadoing" then
"goto cellar"

else if "it is sunshining" then

"play tennis"
else

5 "turn on radio"

where we have included the last 'else' to take care of the time when none of the
weather conditions we know about occurs.

I

" -18-

L% " ". "."..%%. % -'-- % % . % ", " "5", ' %

'HE CONSTRUCTS The Multiple Choice Construct

.' The Multiple Choice construct can be diagramed

b*

-19

!FALS
IS

B2
:

|•B
3. .. .

• ,,

ia

Iteration THE CONSTRUCTS

4.7 Iteration

Iteration is one of the great strengths of computers: the machines will do the
same actions over and over with no complaint.

There are two types of iteration: indeterminate, and determinate. Indeterminate
V' iteration can be profitably applied to reading numbers from files when the
A-. length of the file is unknown prior to reading. Determinate iteration may be

used when certain portions of an array whose size is completely known must be
set to some value.

Indeterminate iteration may be classified into two subtypes:

- Test, then (perhaps) act. This iteration construct is called the While.

- Act, then test. This construct is called the Repeat-Until.

.20

-- 20

2Y:

S. *s.S S '~ .--

THE CONSTRUCTS Iteration

4.7.1 The While Construct The indeterminate iteration is applicable in those
cases when the number of times the iteration will be done is not known a priori.
Given that B is a Boolean expression, then the While construct has the form

while P,
S.

Note that the statement S may not be executed at ailt For example:

while "not quitting time"

* . "do some more work"

If it is quitting time, then "do some more work" is not done. Another example:

While "you have not reached the end of a file"

"read and process the next line of the file"

If we are already at the end of file, then "read and process the next line of
the file" is not even attempted.

The While construct can be diagramed

FASLSE

* The 'going back'-ness of this construct is what gives rise to the term 'loop' to
describe iteration. I will henceforth use the terms 'iteration construct' and

s%,'loop' interchangeably.

40

Iteration THE CONSTRUCTS

4.7.2 The Repeat-Until Construct This iteration places the test at the end of
the loop. Note the difference between the While and the Repeat-Until: the
statements controlled by the While may not be executed, whereas the statements
under control of the Repeat-Until are guaranteed to be executed at least once.
Given that B is a Boolean expression, then the Repeat-Until construct has the

Repeat
Si.
S2.

Until B.

In this construct, the statements S1 and S2 are guaranteed to be executed at
least once. For example:

Repeat
"brush uppers"

- . "brush lowers"

Until "teeth are clean'

The Repeat-Until can be diagramed

FALSE

_22-

THE CONSTRUCTS Iteration

4.7.3 The Determinate Iteration Construct This kind of iteration is called
determinate because the number of times the loop will be executed is dependent
on an index to some countable sequence. The .sequence is assumed to begin at J
and continue to K in increments of M (the sequence may increase or decrease).

* Let B be a Boolean expression which compares the values of the integer variables
* I and K (say, for example, B is the expression "I is less than K"). Then the

- determinate iteration construct has the form

I becomes J.
While B

S.
I becomes I + M.
I

-where the braces '[' and ' define the complete range of statements under con-
trol of the While. Note that there exists the possibility that statements "S"

* and "I becomes I + M" may not be executed at all (why?).

* Determinate iteration may be diagramed

where the statement Il represents the initialization of the counter, and 12
represents the resetting of the counter so it points to the next item of

- interest.

As an example of this construct, let's find and print the largest element MAX in
an array of integers ZOT which has N elements. Let's say N =3 and the contents
of ZOT are

ZOT(1= 27
-~ ZOT(2) = 31

* ZOT(3) =12

Let's assume we have an integer variable %IV which we can use to access each of
the elements of the array ZOT. We'll also assume that the contents of ZOT are

* calculated in some other part of our program, and that we don't know what the
values of ZOT are. We do know that there are N values we have to look at, and

-23-

Iteration THE CONSTRTJCT3

that we'd better look at them all. So, here is an English 'code fragment' which
will allow us to find MAX

MAX becomes ZOT(1).
I becomes 1.
While "I is less than or equal to N"

* If "MAX is less than ZOT(I)" then "MAX becomes ZOT(l)"
I becomes I+1.

Print: "The largest value in the ZOT array is " MAX.

In this example, we've combined the While and the Conditional constructs.

Exercise: mark the three parts of this program fragment to show the initializa-
tion, computation, and clean-up phases.

Now let's step through the calculations by substituting numerical values for
each variable:

MAX becomes 27.
I becomes 1.
While "1 is less than or equal to I"

If "27 is less than 27" then (not true, so do nothing!)
I becomes 2

While "12 is less than or equal to 3"
If "27 is less than 31" then "MAX becomes 31."
I becomes 3

While "3 is less than or equal to 3"
L* If "31 is less than 12" then (not true, do nothing)

I becomes 14
- -While "4 is less than or equal to 3" (not true, end the While)

The largest value in the ZOT array is 31. (printed answer)

and the loop terminates with MAX =31 and I 4.

Exercises:

1. Initialize I to 2 instead of 1. Is the program any faster? By how much?
Is it easier or harder to understand? Why?

2. Does the changed program work if N 1?

*3. How would you change this program to make it work for N 0? What value

would you assign to MAX?

-24-

' .

THE CONSTRUCTS Altered Loops

4.8 Altered Loops

Strictly speaking, we can structure our code. with only the Conditional, the
Alternative, the Multiple Choice, the While, the Repeat-Until, and the Deter-
minate Iteration constructs. Using only these constructs sometimes makes for

- extremely convoluted programs, and the meaning of a program can actually be made
clearer by performing a test inside a loop and directing the path of the execu-
tion according to the test results. This kind of construct thus alters the
nature of the loop to "semi-determinate." Be this as it may, please observe the

- following maxim:

ALTER LOOPS INFREQUENTLY.

" You will notice in the graphics for altered loops that there are seven paths
between parts of the construct. Although this is still within the realm of
comprehension, it is complicated, and makes understanding of a program more dif-
ficult.

-- 25-

4,V

-°* S ~ -

Altered Loops THE CONSTRUCTS

4.8.1 Loop Exits

The first unusual circumstance is 'stop iterating immediately (i.e., leave the
loop);' the next statement to be executed is the one which follows the termina-

* tor of the loop. This construction is typical in parts of programs which check
data for errors and reach an impasse.

While Bl1
Si.
If B2

then "break"
Else,

S2.

S3.

In this construct, the word "break" means that computation is to continue with
statement S3, which is entirely outside of the range of the While.

The Loop Exit can be used to alter any iteration construct; it is diagramed
modifying a While.

TRUE TRUE

61S

FAS

.MI

THE CONSTRUCTS

41.8.2 Loop Redo

The second unusual circumstance is immediately continue iteration with the next
test.'

While B1 {
Si.
If B2

then "next"
Else,

S2.

S3.

In this construct, the word "next" means that computation is to proceed with the
next test B1. That is, "next" says "continue computation with the statement
'While B1." By the way, use of the "next" is extremely rare (I have used it
infrequently, and find few uses in the references).

The Loop Redo can be used to alter any iteration construct; it is diagramed
modifying a While.

i s1

.TRUE

'B
1 B2

FALSE FALSE

S2

-27-

Construct Summary THE CONSTRUCTS

4.9 Construct Summary

Conditional: If B then
S.

Alternative: If B1 then
Si.

Else
32.

Multiple Choice: In case of If BI then

B": S1. S1.
B2: S2. (or) Else if 82 then
B3: S3. S2.
B4: S4. Else if R3 then

s3.
Else if B4 then

s4.
While: While 8

S.

Repeat-Until: Repeat
t? S

Until R.

Determinate: I becomes J.
While H {

S.
I becomes I + M.

Loop exit: Break.

Loop Redo: Next.

-28-

W6b *** -. . ~ * -

THE CONSTRUCTS Which Construct?

* 14.10 Which Construct?

We now have a complete set of constructs to apply to any programming problem.
* The nagging question remains: Which construct should be used where? You will
* usually have little difficulty in selecting from the Conditional, Alternative,

or Multiple Choice constructs. The problem usually lies with the loops.

- The following may help in selecting the appropriate iteration construct:

-How the iteration is supposed to stop will hint at the form of the con-
struct. By the way, make sure it will stop!

-You can always use a While (you might have noticed that the two other,
iteration constructs are really variations of the While).

-If you can count the data items to be processed, then the Determinate
* iteration is usually proper.

Examples THE CONSTRUCTS

4.11 Examples

These examples are a good opportunity for some exercise. For each case, write
an 'English' program, and compare it to the-sample solution shown at the end of
the chapter. Then translate your program into a programming language and com-
pare your translation with the example shown in the section devoted to that tar-
get language.

4.11.1 Temperature Conversion Produce a table of equivalent Celsius tempera-
tures for the Fahrenheit temperatures from -40F to 1OOF in increments of 5F.

Given any Fahrenheit temperature F (i.e., F is the REAL temperature), the Cel-

sius, or PHONY, temperature C is given by the equation

C 5*(F - 32)/9

where the symbol '*' means 'multiply,' and the symbol "I means 'divide.'

We might proceed as follows. Beginning at the top of a page of lined paper,
write down the first Fahrenheit temperature to be converted: -40. We now plug
-40 into our recipe for Celsius temperature

5"(-40-32)/9 = 5*(-72)/9 = -360/9 = -40

and write down the answer -40C in a second column. Since we haven't completed
our job yet (we haven't reached 1OOF), we add 5F to the current temperature
(-40F) to obtain -35F. With Fahrenheit temperature of -35F, we plug and chug,

producing -31C. We continue this process until the table is full.

Space is provided here for your program.

-30-

- , -:. ', . ' ' ' " ."",""-" "-" ". - . "-A . ,

THE CONSTRUCTS Examples

4.11.2 Nearest Points Given 10 points in 3-D space, find the two points which
are nearest to each other.

The solution to this problem is intuitively obvious. We merely compute the dis-
tance from each point to its neighbors using the distance formula

" d = sqrt[(x2-xl)"*2 + (y2-yl)*12 + (z2-zl)ll21

where 'd' is the distance, "sqrt' represents the square root, '002' represents
squaring a number, 'x2" is the x-coordinate of "one" point (y2 and z2 are the y-
and z-coordinates of this same point), 'x1" is the x-coordinate or "another"
point (yl and z1 are the y- and z-coordinates of this same point).

Those two points which are at the minimum distance are the two closest neigh-
bors.

Additional exercises:

1. Modify your program to rind the points which are farthest apart.

2. Print all pairs of points which are at the same minimum (maximum) distance.

3. Print a table of the distances from each point to its neighbor.

o.1°

4. -31-

Examples THE CONSTRUCTS

41.11.3 Count the 'A's Read <input> and count the number of 'A's in the file.

This is a simple problem mentally, but is quite tedious and prone to error.
* Let's assume that we can tell when we have reached the end of a file, much like

we can tell when we've reached the end of a book. Then we need merely read the

* file a character at a time, and check to see if the character we've just read is
*an 'A.' If it is, then we can increase our count of 'A's by one. (Hint: What

does the initial value of our count have to be, i.e., before we read any charac-
* ters? Does your program give the correct count when there are no 'A's? When
* there are no characters at all?)

* Additional exercise: modify your program to read real numbers from a file and
count the values greater than some threshold, say, 10.0. Assume that the last
line in the file will have the number -99999.0.

-. 32

.4%A

THE CONSTRUCTS Solutions to the Examples

4.12 Solutions to the Examples

4.12.1 Temperature Conversion

Initialization - declarations:

Let F and C be real variables which measure temperature.

Tnitialization - setting initial values:

F becomes -40.

Computation:

While F is less than or equal to 100 {
C becomes 5*(F-32)/9.
Print: F, C.
F becomes F + 5.
}

Cleanup:

(none!)

-33-

'@ ~ *Ap *- .9

*°."

Solutions to the Examples THE CONSTRUCTS

4.12.2 Nearest Points

Initialization - declarations:

Let OLDD be a real variable measuring the smallest distance.
Let MEWD be a real variable measuring

the distance between any two points.
Let X be an array of reals containing the 3 coordinates of

each of the 10 points. Let the first subscript designate the point,
Letand the second designate the coordinate. X is therefore 10 by 3.
Let I, J, K, M, and N be integer variables used for counting.

Initialization - setting initial values:

Read all the coordinates into X from <input>.
OLDD becomes the distance between point 1 and point 2 (why?);

i.e., OLDD becomes SQRT((X(I,1)-X(2,1))'2

*+ (X(1,2)-X(2,2))*2
+ (X(1,3)-X(2,3))'*2)

Computation:

I becomes 1.
While "I is less than or equal to 9" {

J becomes 1+1.
di; While "J is less than or equal to 10" {

NEWD becomes SQRT((X(I,1)-X(J,I))'2
+ (X(I,2)-X(J,2))*"2
+(X(I,3)-X(,3))"2)

(found a new nearest?)

~. If "NEWD is less than or equal to OLDD" then f
M becomes I.
N becomes J.
OLDD becomes NEWD.}

J becomes J+1.
I (end of While "J is less...)

I becomes 1+1.
I (end of While "I is less...)

Cleanup:

Print: " Closest points are:'
Print: X(M,1),X(M,2),X(M,3)
Print: X(N,1),X(N,2),X(N,3)

-34-

THE CONSTRUCTS Solutions to the Examples

4.12.3 Count the 'A's

Initialization - declarations:

Let Count be an integer variable.
Let Ch be a character variable.

Initialization - setting initial values:

Count becomes 0.
Read Ch.

Computations:

While "not end of report" {
If Ch = 'A' then

- Count becomes Count + 1.
-.- Read Ch. (destroying what was in Ch)

Cleanup:

Print: Count.

L-35-

'-v

5. GETTING YOUR PROGRAM TO RUN

Assuming that you've written your program cor~rectly in 'English' and correctly
translated it into a programming language, how do you get it onto the machine
and running?

Presuming you are working with a CDC machine, the steps necessary are:

- typing the program into the computer using a text editor (with ED, for

example fRoth82]),

- 'compiling' the code into %machine language,'

- 'loading' the machine language,

- and %executing' the program.

A sketch of this procedure is shown below.

ED 'W.,

-s 1

(code)

~~~LOADE R " •

s .5

(abs s

• "(input) SYSTEM (output)

.--.. I've called the file of code that you write with ED %<code>.' It will be a file
" " of, say, FORTRAN, ratfor, or Pascal.

.-- A COMPILER is a program which translates a higher order language' (your code)
' into 'machine language,' which is very difficult to read and understand, and

which varies from one brand of machine to another. Compilers were invented to
'-- '. reduce your need to look at the machine language, and express yourself in a way
"' .which is portable from one machine to another.

- The machine language file is called <lgo> (from load and &0_). It is difficult
(impossible) to read <lgo> with ED; if you do enter ED with a <go> file, you

will destroy it if you do a SAVE!

-36-



GETTING YOUR PROGRAM TO RUN

'Loading' is a process which allows you to use things which other people have
written, including the transcendental functions, the input/output routines,
graphics routines, etc. Only files of machine language are LOADed, so the pro-
cess is largely invisible to a casual programmer. Naturally enough, LOADing is
performed by a program called a LOADER, which reads your <lgo> file and writes
its product, the "absolute' program, into a file called <abs>. <abs> is the
only kind of file which can execute on a CDC machine (<abs> is also imppssible
to read with ED).

Execution is the performance of work according to the program you wrote. This
is done by typing the command 'abs.'

The solid lines in the sketch show the path of intellect when everything goes-
right.' Unfortunately, everything going right on the first shot is a rare
occurrence. Still, you want to spend as little time as necessary in this 'loop'
trying to get your program to run. You can use the aids in the next two
chapters to make everything 'go right' as soon as possible.

The dotted arrows show the path of intellect when something 'goes wrong.' You
eliminate errors by repairing <code> and repeating the compile-load-go process
until no errors exist, since the tools used here are very reliable. That is,

* except in extremely rare cases, the errors are yours, not the computer systems'.

The easiest ways to effect this loop quickly are through the use of the pro-
cedures in Chapter 4 of [Roth83].

i

l
";, -37-

te



6. THE PROGRAM CHECKLIST

Although programs can be designed and coded from simple principles, the devil
*hides in the details. To prevent this ancient foe from getting a toehold on

their code, experienced programers can often be observed practicing seemingLy
weird and lengthy incantations before they run their programs. The list
presented in this chapter extends one found in (Myer7ql and initiates the novice

*into this cabala. Scan through this list and compare your program to each of
the questions asked here.

6.1 Data Reference Errors

1. Is a variable referenced whose value is unset or uninitialized?

2. Are there any variables which are not referenced? Is this because you
misspelled a variable name?

3. Are all array references within the bounds of the array size?

4i. Are all array references selected with an integer subscript? Some
languages allow REAL type variables as array subscripts (it is best to

2 avoid this 'feature'). If you do this, is the subscript what you expect it
to be?

5. Is a variable being assigned a value which does not match its type?

6. Are there any 'off-by-one' errors in referencing array elements?

7. If an array is referenced in several procedures or subroutines, is it

defined identically in all sections?

*6.2 Data Declaration Errors

*1. Have all variables been explicitly declared? Undeclared arrays can be
misinterpreted by some compilers as functions.

*2. Is each variable declared to have the correct type?

*3. Are all variables and arrays initialized properly? I.e., do the values
assigned to each variable agree with the types of each variable?

4. Are there any variables with similar names (e.g., POINT and POINTS)? This
is not necessarily an error, but it is a sign that names may have been con-
fused or misspelled somewhere in the program.

6.3 Computation Errors

1. Are computations done with variables having inconsistent types (e.g., mul-I tiplication of variables of type 'character')?
2. Are there any mixed-mode computations (INTEGER and REAL)? This is rnot

necessarily an error, but is the computation result of the expected type'

-38-



THE PROGRAM CHECKLIST Computation Errors

3. Do computations with arrays have the proper matching lengths where
required? E.g., a matrix product requires a match of' the 'inner dimension'
of' the arrays.

14. Are any divisions perf'ormed with divisors very close to zero? Does this
af'fect the validity of' the computations?

5. Is it possible f'or a divisor to be zero? Is it possible that some f'unc-
tions employ a zero divisor (e.g., the MOD function, the arctangent f'unc-
tion, etc.)?

6. Are there any consequences of' the f'act that digital computers rarely
* represent decimal numbers exactly? I.e., 1/3 + 1/3 + 1/3 does not equal

1.0.

7. Can a variable go outside its meaningf'ul range? For example, can a vari-
able measuring probability ever be greater than 1.0?

8. Is the assumption of' the order of' evaluation correct f'or expressions which
contain more than one operator?

9. Are there any invalid uses of' integer arithmetic? For instance, if' T Is an
integer variable, 2*1/2 is equal to I only if' I is even and only if' the
multiplication is done f'irst.

6.4j Comparison Errors

1. Are there any comparisons of' variables of' incompatible types? I.e., are
characters compared with reals?

*2. Are there any mixed mode comparisons?

3. Are the compariqon operators correct? Most of' the difficulty arises in the
combined use of' 'and', 'or', and 'not.'

4. Are the operators of' logical expressions of' type logical? For example, to
determine if' I is between the values ? and 10, the correct expression is
(2<1)&(I<10), not (2<I<10).

5. Are there any comparisons of' numbers with fractional parts in which trunca-
tion errors play a role?

6.5 Construct Errors

* *1. Is it possible that certain entry conditions will prevent execution of' your
program? For example, in the loop

while "not f'ound"
S.

what happens if' "f'ound" is initially true?

% A -,- . * - . ._



Construct Errors THE PROGRAM CHECKLIST

2. Can the number of selections in a Multiple Choice construct ever exceed the
number of possibilities you've allowed for?

3. Will every loop eventually terminate?

4I. What are the consequences of an Indeterminate Iteration going all the way
to the bitter end? For example, in the following program fragment (a loop

* controlled by a compound Boolean expression), what happens if "found" never
becomes true?

* i becomes 1.
while ( (i < tablesize) and (not found))

S.
i becomes i + 1.

5. Are there any "off-by-one" errors (too many or too few iterations)?

6. Is there a corresponding ending bracket to every opening bracket (if the
programming language uses them)? Are the program statements grouped prop-
erly with brackets?

7. Are there any non-exhaustive decisions? E.g., if a variable is supposed to
have one of the values 1, 2, or 3, do you assume that the value must be 3
if it is not 1 or 2? Is this valid, particularly for program input?

6.6 Interface Errors

Some programming languages allow programs to be broken into smaller, more
manageable parts called subroutines or modules. The interface between modules
can sometimes be a source of errors.

1. Is the number of arguments received by a module the same as the number
sent? Are they in the correct order?

2. Are there any unused arguments?

S3. Do the attributes of each passed variable match the attributes of the
*received variable? For example, is a simple REAL variable passed to a

module which expects an array?

* . 4. Are the units of each passed variable correct? For example, is the passed
-j value expressed in degrees while the expected value is expressed in radi-

ans'?

5. Does the number of variables passed by a module equal the number of vari-
ables expected by the called module? Are they in the correct order?

6. Are the number, order, and type of variable correctly passed to 'built-in'
* .functions? For example, does the arctangent function require one or two

arguments? If two, which one is the divisor?

-140-



THE PROGRAM CHECKLIST Interface Errors

*7. Does a subroutine alter a value which is supposed to be only input? For
example, is an argument defining the length of an array used as the index
to a determinate loop? What is it's value on return from the module?

8. Are global variables referenced the same way in all modules? In FORTRAN,
for example, are the variables listed in COMMON blocks the same everywhere?

9. Are constants ever passed to subprograms? For example, the FORTRAN state-
ment

* CALL SuIB(A,3)

can be dangerous, because if SUB assigns a value to the second argument, 3
will no longer be 31 (This has given rise to the old saw: 'All constants
are variable.')

*10. Will the program, subroutine or module eventually terminate?

*6.7 Input/Output Errors

Many languages permit several ways to access files. If you are using these
f'eatures, check your program with this list:

* 1. Are file attributes correctly declared?

*2. Are the attributes on the OPEN statement correct?

*3. Does the format specification agree with the READ statement?

*4. Are arrays declared to be large enough to contain all the information to be
read?

5. Have all files been opened before use?

6. Are end-of-file conditions detected and handled correctly?

7. Are Input/Output error conditions handled correctly?

*8. Are there spelling or grammar errors in any messages written by the pro-
gram? Are the messages intelligible?

6.8 Miscellany

1. If the compiler you are using has a 'post mortem dm'switch, set it to
- 'on.'- This switch will allow the computer to print, at the time of your[ program's death, the values of your variables according to their types

(rather than in their octal or hexadecimal representation). I.e., the
values of REAL variables are printed in engineering notation, INTEGERs are
printed as integers, LOGICALs are printed as TRUE or FALSE, etc. The clues
offered by this tool are extremely helpful. (Note that the procedures of
Chapter 4 of [Roth831 have this switch set 'on'.)

-41-



Miscellany THE PROGRAM CHECKLIST

2. Does the compiler cross reference map indicate variables which are unused
or referenced only once? This may not be an error, but might point to
misspellings.

*3. Are the attributes which the compiler assigns to each variable the ones you
expected?

* 14*Did the compiler produce any 'warning' messages (assuming of course that
you have a successful compile)? These messages point to potential prob-
lems.

- -5. Is the program or module sufficiently 'robust?' That is, does it check its.
- input for validity, or can it be killed with a 'reasonable' number?

6.Does the program NOT do something that you expected it would?

-42-



7. DEB~UGGING

Your program has finally 'compiled' and *go'ed, but produces erroneous output.
This is caused by 'bugs' which must be found and exterminated in order for the
program to be 'correct."*

This chapter provides an approach to bug eradication; don't forget the checklist
in the previous chapter. Many of the following suggestions are from [14yer791.

1 7.1 Think

The building size necessary to contain a computer with the power of your brain
would exceed that of the Empire State Building. You may not be able to calcu--
late quickly, but you can intuit. You should be able to debug most of your pro-
grams without going near a computer.

7.2 If You Reach An Impasse

-sleep on it. Your subconscious mind has great potential for working things
out while you're doing something else. This is not an excuse to catch a

4 few z's on the job.

-describe the problem to someone else. By making an effort to tell a good
listener what your program is doing,. you may discover the problem yourself.
The listener need not be an expert on what you're doing, either; an
ignorant person can often see the naked emperor.

7.3 Where There Is One Bug

there are likely to be more. Examine the immediate vicinity of a bug for other
errors, since bugs usually result from a misunderstanding of what the program is
supposed to do. Note also that small pieces of code may be veritable 'roach
hotels;' there are such things as error-prone modules.

7.4 Fix The Error

Don't just fix the symptom of the error. Make sure that all occurrences of' the
error are fixed, not just this 'Just-discovered' one.

7.5 Bebugging

* Recognize that fixing a program is likely to introduce new bugs, because the
* entire concept of the program may not be fresh in your mind.

7.6 Faulty Bug Repair

Your 'fix' may be wrong! The probability of a correct fix decreases with the
* size of the program, and varies with the size of the fix. Bug repair should
* place you mentally in the program design stage.

*if you would rather wave your hand and say, 'Yeah, I know it doesn't work
for such-and-such a case, but so whatl?' then the bug is known as a
'feature.'

_.4 3-.



K...Use Debugging Tools DEBUGGING

7.7 Use Debugging Tools

only as a second resort. An 'interactive d '-bugger' requires that you learn
another language, and only gives a static picture of what a program is doing.

%.7 1Use them as an adjunct to, but rnot a re placement for, thought.

7.8 Avoid Experimentation

Experiment only as a last resort. A common mistake made by novices is to
attempt to solve the problem by changing the program. For example, "Hmmm... I

* don't know what's wrong, so let's change this DO loop and see what happens."
This kind of behavior has little chance of addressing the actual problem, and

* muddies the waters by introducing other errors.

7.9 Use an Octal or Hexadecimal Dump

never.

-44-



8. THE LANGUAGES

The second most important requirement of computer programs is that they be legi-
ble to humans.* We use programming languages when we talk with computers because
English is imprecise (although we humans can understand it even when it is
misusedl). While we maintain precision in our programming, our computer talk
must also be understandable by humans, because we are the race which must 'main-
tain' the programs. This understandability is controlled first, by the language
itself, and second, by the way in which we use the language.

- The languages are presented in the order of decreasing readability. Thus, if
you wish your programs to be readable, you should rather write in ratfor, Pas-
cal, or C, and avoid BASIC and programmable calculators. My viewpoint is: the

*language defines the machine. Hence, I may write programs for a 'Pascal com-
puter or a "FORTRAN Engine and not concern myself with what the machine really
is.

An aside re 'standard' languages: there are no such things! Although a document
- may exist which describes the 'standard' for a particular language, each imple-

mentor includes the bells and whistles which make his own hardware hum. So
there are actually several 'versions' of a standard language; moving from one
machine to another can still be a difficult proposition.

8.1 Languages Included

ratfor Invented by Kernighan and Plauger [Kern761 to provide reasonable con-
structs for FORTRAN, rational fortran is really a preprocessor to the
FORTRAN language. It allows all the features of FORTRAN to be
accessed, so the advantages of portability, universality, and relative
efficiency of FORTRAN are retained. In addition, it has a 'macro'
expansion capability, is free-format, and allows comments on the same
line as program text. This language is easily read by programmers
with a FORTRAN background.

ratfor is maintained in two versions: a source version in ratfor
itself (to permit maintenance in a reasonable language) and a source
version in FORTRAN66 to allow easy portability amongst computers.

Pascal A simple language invented by Niklaus Wirth [Jens741 specifically to
teach programming, it has found wide use on microcomputers as well as
on mainframes. Its structure 'enforces' good programming practices,
and catches many errors early in the programming process, saving
debugging time and cost. It is free-format, and allows extreme flexi-
bility in data structuring, commenting, and recursion in both data and
procedures. The best texts for learning Pascal are rWirt731,

e[Jens741, [Atki8O], and [Coop82].

" C This is the language in which the UNIX operating system is written.
It is a free-format, terse, language whose form contributed much to
the style of ratfor. Several significant scientific programs have
been written in C. The standard C manual is the reference [Kern78!.

i Readability supersedes all program requirements except correctness.

•.- 5-

k-, z *,. ,' . .. "'.'. . .. '.....' ......



Languages Included .THE LANGUAGES

FORTRAN77 The most recent revision of' FORTRAN. The major updates it provides to
FORTRAN66 are: the CHARACTER type, string processing, the block IF-
THEN-ELSE, and greater explicit control over Input/Output WIO). Syn-
tax is still somewhat inconsistent; and the meaning of' one of' the FOR-
TRAN66 constructs has been changed(t).

FORTHAN66 The 'standard' scientif'ic language since 1954. It is the lingua
f'ranca of' the engineering community. All of' the 'large' f'inite ele-

* . ment programs have been written in FORTRAN66, and almost all computer
vendors offer a FORTRAN66 compiler. Syntax of' this language is
unusual, and it f'orces you to write your program backwards f'rom the

- * way you would express it in English. But 'everyone' knows it, so its
anomalies are generally overlooked or unrecognized. It is to your.
advantage to write in some other language if' possible; 'ratf'or' is a
reasonable alternative.

BASIC The most widespread microcomputer language available today. Invented
to teach computing to Dartmouth students, this language is feature-
poor, and also f'orces you to program backwards f'rom your thinking
processes.

8.2 Languages Excluded

Ada* This language is now under development. It is the new 'standard' DoD
language f'or embedded systems (systems which are part of' some other
machine, such as a tank, a ship, a torpedo, etc.). Ada is an
.'enhanced derivative' of' Pascal.

Algol This family of' languages preceded the development of' Pascal. It is
the native language of' Burroughs machines.

APL A very powerf'ul, very cryptic, language. The information content of'
.APL programs is extremely dense. Per (Kell81l, APL is "so compacted
that the source code can be freely disseminated without revealing the
programmer's intent or jeopardizing proprietary rights." It is impos-
sible to maintain programs written in APL; one throws them away and
redoes them.

Assembly Assembly language is a mnemonic method f'or addressing the computer's
'instruction set.' Usually, it is a very primitive language (note,
however, that the Burroughs machine instructions are Algol, a 'high
level' language). Programming in assembly language is undesirable
because it takes too much time to do it, and because it is nigh impos-
sible to move it to another vendor's machine. Certainly, some pieces
of' some programs should be written in assembly language (data acquisi-
tion programs and arcade games, for example), but because it can take
ten times more humnan time to write assembly than some other higher-

* order language, it is rare that one can recover an investment in
assembly language code development. The code produced by optimizing

* - compilers is as good as, and in many cases, better than, the code one
could produce 'by hand' using assembly language. Theref'ore, assembly

TAda is a trademark of' the Department of' Defense.

_46



THE LANGUAGES Languages Excluded

language programming is to be eschewed.

COBOL A language designed primarily for business purposes, and not very use-
ful for engineering purposes.

. FORTH A 'threaded' language in some use on microcomputers, which forces the
programmer to act as part of the compiler. This language immortalizes
reverse Polish notation (alias 'Okie code') in programs; FORTH pro-
grams are hard to read.

Lisp The de facto language of the artificial intelligence community. It is
not designed for, and hence has seen little use in, number crunching.

Modula-2 Niklaus Wirth's successor to Pascal. It removes many of the difficul-
ties associated with program development in Pascal, but distribution
of this language has not been wide-spread to date.

PL/I IBM's answer to the FORTRAN/COBOL dichotomy. An enormous and complex
language. Never really caught on in the engineering community.

T159 The Texas Instruments' model 59 Programmable calculator (as well as
other models by Texas Instruments, Hewlett-Packard, Sharp, etc.)allows progrrms to be written in terms of keystrokes. The languages

are very close to assembly language; hence, the remarks directed at
assembly languages are also applicable here. Although I planned to
include examples of the six constructs expressed in this language,
they were so unreadable that I omitted them. Because of the recent
advances in miniaturization of electronic components, shirt-pocket
computers are now available (with BASIC interpreters) for the price of
a calculator. Programmable calculators are antiques (which is not to
say that they are not usefull).

others Languages which are either dead, distasteful, experimental, unknown to
me, or little used for engineering work. This includes languages like
MAD, CLII, Gypsy, SNOBOL, Euclid, Simula, RPG, Simscript, etc., etc.

_ 7

I

'

-.1-47- - ... ..



'0

79. RATFOR

Blocks of statements in ratfor are grouped 4rith braces "{ and "}'. On CDC sys-
tems, these may be entered as either braces or brackets '[ 1'. Unfortunately,
the CDC character set is not common across all the printers, so brackets may
appear as either brackets or braces.

ratfor is a free-format language. It is a good idea to indent your code so that
the logical structure of the program is reflected by the layout of the text on a
page.

There are three ways to provide commentary in ratfor programs: with a 'C' or
in column 1, or with a '#' anywhere. You should start your program text in
column 2 or 3 so that a 'C' or a '' in column 1 is not interpreted as a comment
line. Blank lines are ignored by ratfor, so you may also use these to provide

* additional 'white space.

9.1 Variable Names

Names of variables are limited by the limitations of the target FORTRAN (since
ratfor preprocesses text to FORTRAN). Normally, this is a maximum of six char-
acters. Every variable should be declared to be of a specific type, and its
purpose defined. This may be done easily through the type definitions REAL,
INTEGER, LOGICAL, CHARACTER, COMPLEX, and DOUBLE, and the on-the-same-line com-
mentary ratfor provides. It is inadvisable to rely on FORTRAN to automatically
type your variables for you.

The type definitions may also be used to declare the dimensions of arrays, so
the DIMENSION statement is not needed in ratfor or FORTRAN programs.

ratfor uses the 'reserved word' concept; i.e., there are several words which are
special to ratfor. Thus, in ratfor programs, you may not use any of the follow-
ing words for variable names: break, do, else, if, next, repeat, until, and
while.

_-t/

44..

4,

-.** * * * * . * **|. ' . * * - . . ~ . *~~' .



RATFOR Boolean Expression

9.2 Boolean Expression

X and Y are assumed to be variables of the same type.

"" X is greater than Y:

-.-.. X>Y

X is greater than or equal to Y:

X >= Y or X => Y

X is equal to Y:

X == Y

X is not equal to Y:

X =̂ Y (on CDC)
X != Y (on UNIX)

X is less than Y:

X<Y

X is less than or equal to Y:

X <= Y or X =< Y

9.3 Assignment Statement

X = expression

(Same as FORTRAN.)

9.4 Conditional

if (B)
S1
S2
} # end if

-49-

Au*- %, '



-76.7~.~ **

Alternative RATFOR

~ 9.5 Alternative
if (B){

Si
N S2

elsef
S3

# end if

* 9.6 Multiple Choice

The clearest way to select from multiple possibilities is with a series of If-
Then-Else 's.

if (B1)
Si

else if (B2)
S2

else if CB3)
S3

else
Sn

9.7 While

while (B)
Si
S2
# end while

9.8 Repea t-Until

repeat [ # until (B)

-'S2

-m I until (B)

where it is helpful to a reader to have the termination condition of the loop
presented in commentary on the Repeat line.

1;Iz -50-



An

RATFOR Determinate Iteration

9.9 Determinate Iteration

The ratfor 'Do' is identical to the FORTRAN ;Do', with the exception that ratfor
requires no label* as a loop terminator. If the target language is FORTRAN66,
then the Do index may only increase; if the target is FORTRAN77, the index may
increase or decrease. (Hence, a decreasing index is more clearly handled with a
While or a Repeat-Until.)

do I = J,K,M f
Si
S2
) # end do

9.10 Altered Loops

9.10.1 Loop Exit

Although any loop (While, Repeat-Until, Determinate) may be "exit'ed, we illus-
trate with a While.

while (81) f

Si
if (B2)

break
S2
) # end while

9.10.2 Loop Redo

Although any loop (While, Repeat-Until, Determinate) may be "re-do'ed, we illus-
trate with a While.

while (BI) {
SI
if (B2)

next
S2
I # end while

SIn general, the only labels you need in a ratfor program are those on FORMAT
statements.

-51-



Generalized Iteration RATFOP

9.11 Generalized Iteration

ratfor provides a generalized iteration scheme called the For. It has the form

for ( initialize; B; reinitialize ) {
S1
S2

which is the equivalent of

initialize
while (B) [

S1
S2
reinitialize

1

The For may be easier to understand in some circumstances because it keeps all

terms which control the loop on a single "line.'

-- 52

-4
-V

4-

.4



, RATFOR ratfor Summary

9.12 ratfor Summary

Conditional: if (B)
S

Alternative: if (Bl)
Si

else
S2

Multiple Choice: if B1
S1

else if B2
S2

else if B3
-. S3

else if R4
-- $4

While: while (B)
S

Repeat-Until: repeat
S

until (B)

Determinate: do i = J,k,m
-. S

__7 Generalized loop: for ( int; B; re-init )
S

Loop Exit: break

Loop Redo: next

,53

-53

2..

°,

* C.L *3



Program Header RATFOR

9.13 Program Header

The ratfor program header requires a comment line which identifies the program,
followed by the same information as that required in a FORTRAN program. On CDC
machines, this has the form

# name - a line to demonstrate the header format
program name( filel, file2, ... )

declaration of variable types

9.14 Running a ratfor Program

Assume you have composed your program with a text editor on a CDC computer and
the code is in <p>. Assume further that you have already executed the commands

ATTACH,ROTHICCLLIBID=CSPRo
LIBRARY,ROTH.

(you must execute these commands only once). Then the program in <p> may be run
*. with the command

rr'p.

(see [Roth83]).

-

'4,f

..

'€ .",? ."2 :'€ , :",";,' €' :';':'.".-" " "' .', ",. ',"," " " " " " ' . .i ,: .". ", J ". '" ' ' " " " . 5 .



RATFOR Examples

9.15 Examples

I will assume that ratfor is preprocessing programs for ORWAN66.

9.15.1 Temperature Conversion

# ftoc - fahrenheit to celsiusconversion, -40f to 100f
program main(output)
real f,c # fahrenheit, celsius temperatures

f = -40.0
while( f <= 100.0 ) {

c = 5.09(f - 32.0)/9.0
print *, f,c
f f + 5.0
e

end

.

-55-

* *. , *, . q***/. ~ ~



F- o .-

Examples RATFOR

9.15.2 Nearest Points Assume that the three coordinates of each point are

typed on a single line of <input>.

# near - find 2 of 10 points which are closest neighbors
program near( input, output)
real x(10,3) # array of points
real oldd,newd # distances between points
integer i,jk,mn # counters

read *,((x(i,j),J=1,3),iv1,1O) # free format read
# first distance: from 1 to 2

oldd z sqrt( (x(1,1)-x(2,1))*2
+ (x(1,2)-x(2,2))112
+ (x(1,3)-x(2,3))*"2)

do i = 1, 9 (
ipl = i + 1
do j = ipl, 10 {

newd = sqrt( (x(i,1)-x(j,1))**2
+ (x(i,2)-x(j,2))**2
+ (x(i,3)-x(j,3))**2)

if( newd <= oldd ) # # found a new nearest neighbor
4.-.

nj
oldd newd

I# end do j
# end do i

print *,' closest points are at
print I, (x(m,i),i=1,3), (x(n,i),iz1,3)
end

.44.

..'..,,

,..

*'' -56-

•,



RATFOR Examples

9.15.3 Count the 'A's Approachs assume that each line has at most 132 oharao-
ters, and read an entire line at a time* Also assume that character variables
can be represented as integers (this works on CDC machines)* If the line Is
shorter than 132 characters, FORTRAN will act as if the nonexistent characters

-~ were bl~anks. If the line is longer than 132 characters, the excess will be
(silently) truncated (perhaps not the best solution),

# counta - count the number of times 'A' appears in <input>
program counta( input,output,tape5minput)
integer count, ]ine(132), i
integer eof # end-of-tile function (cdc supplied)

count = 0
* read(5,1) (line(i),i1,132)

1 format(132a1)
while( eof(5) 0 = 0

do i =1, 132
* . if( line~i) =='A')

count = count + 1

red51 lnf)i112

print *,count
end

-57-



10. PASCAL

Blocks of statements in Pascal are grouped with the symbols *begin' and *end';
you might think of them as 'fat brackets.'

Pascal is a free-format language. That is, you may begin your code in any
column. It is a good idea to indent your code so that the logical structure of
the program is reflected by the lhyout of the text on a page.

The symbol '(*" or 'I' opens a comment, and the next occurrence of the symbol
)' or ')' closes a comment.* Comments may occur anywhere and may extend across

line boundaries. Blank lines are ignored by Pascal, so you may also use these
to provide additional 'white space.'

10.1 Variable Names

As in English, Pascal does not limit the number of characters in a variable

name. Most implementations of the language only guarantee that the first 8
characters are significant. That is,

a~ajl lngname
afairlylongnamewithstuffontheenj

probably refer to the same variable. Although it is possible to use any number
of characters, limit yourself to at most 12.

Note that Pascal forces you to declare the types of your variables before you

use them. So while you are declaring their types, you might just as well insert
some commentary which declares their purposes.

Pascal uses the reserved word' concept; i.e., many words are special to Pascal.

Thus, in Pascal programs, you may not name a variable %if,' 'while,' 'repeat,'

S-etc. A full list of the Pascal reserved words is given in tJens74].

0 The braces are not available on CDC.

-.- 58-



PASCAL Boolean Expression

10.2 Boolean Expression

X and Y are variables of the same type.

X is greater than Y:
.

X is greater than or equal to Y:

x >=Y4-.

X is equal to Y:

X is not equal to Y:
S.

U-X<>y

- X is less than Y:

X( <Y

X is less than or equal to Y:

X <= Y

" 10.3 Assignment Statement

X := expression

* 10.14 Conditional

if B then begin
Si;
S2

41 end;

. The semicolon is used in Pascal to join statements. 'begin' and "end' are
reserved words' which serve the same function as brackets in rator.

-59-

.4.

"4



Alternative PASCAL

_O. Alternative

if B then begin

S2
end

else begin
S3;
S14
end ('if*);

10.6 Multiple Choice

There are two ways of selecting from multiple alternatives: the case and the
if ... else if constructs.

10.6.1 The Case
'U"

case I of
Li: Si;
L2: 92;
L3: S3;

Ln: Sn
end (*case*);

The labels 'Li, 'L2', 'L3', ... , 'Ln' are the legitimate values which 'I' can
assume.

10.6.2 if ... else if

if B1 then
Si

else if B2 then
S2

else if B3 then
S3

* else if B4 then
S4(* end if #);

U-.-

. -60-



* PASCAL While

10.7 While

while B do begin
Si;
S2
end(Owhiles);

10.8 Repeat-Until

repeat (0 until B 0)
S1;
s2

until B;

This construct is made clearer to a reader by putting the termination condition
in commentary on the Repeat line,

*. 10.9 Determinate Iteration

10.9.1 Increasing Index

for I := J to K do begin
Si;
S2
end(Otor*);

10.9.2 Decreasing Index

for I := J downto K do begin
$1;
S2
end(Ofor*);

_" In these constructs, J is the initial value of I, and K is the terminal value.
Note that, if the initial condition satisfies the test for termination, the loop
will not be executed. In Pascal, the increment to a loop may be +1 or -1. No
other values are possible. For increments other than +1 or -1, use a While or
Repeat-Until construct.

6j

-61-

L4 ., ., . ." ;i ' ' - .. .. ., . , .... ..-..



"0

,4 Altered Loops PASCAL

10.10 Alterec Loops

10.10.1 Loop Exit Although any loop (While* Repeat-Until, Determinate) may be

"exit'ed, we illustrate with a While.

label 13;

while Bl do begin
01 ;
if B2 then goto 13;
$2
end(*whilet );

13: (*continue program*)

Although this construct is possible, and indeed works, most Pascal-ers would not

recommend it. Clearer, and more in keeping with the style of the language would
be something like

keepon := true; (9 comment explaining "keepon' I)
while B1 and keepon do begin

Si;
if B2 then

keepon := false
else begin

S2
end

end('while*);

because it presents all the loop terminators in a single statement (the While

statement) and it presents the logic in explicitly logical terms rather than in

terms of transportation ('goto label').

-62-



PASCAL Altered Loops

10.10.2 Loop Redo Although any loop (While, Repeat-Until, Determinace) may be
re-do'ed, we illustrate with a While,

label 13;

while B! do begin
SI;
if B2 then goto 13;
32

13: end(*whilef);

Although this construct is also possible, and indeed works, I do not recommend
it. Rather, the following is preferreds

while B1 do begin
Si;
if B2 then begin

(0 empty 'begin end': a do-nothingl ')
end

else begin
S2
end

end(Cwhile');

.

I"T.

* *,.,:".. ,. ..



Pascal Summary PASCAL

10.11 Pascal Summary

Conditional: if B then
S;

Alternative: if B1 then
s1

else
S2;

* Multiple Choice: case I of if BI then
BI:, SI; SI
B2: S2; (or) else if B2 then
B B3: S3; 32
B4: S4 else if 83 then

end; S3
else if B4 then

While: while B
S;

Repeat-Until: repeat
S

until B;

Determinate: for I := J (toldownto) K do
," S;

Loop exit: additional loop oOntrol variable

Loop redo: additional Conditional construct

.

0

-- 64-

d . - .%"": ,,.';,'; 3".", - #'s,., J. " *dJ '.. .'
•

'",'""..,* -" . "", 444". . """ . , 
•

" "." "-'"
"



PASCAL Program Header

10.12 Program Header

U The Pascal program header requires the following information:

program name( filel, file2, ...

label declarations (if any)

constant declarations (if any)

type definitions (if any)

variable definitions (if any)

begin

The program is closed with an %end' which matches the opening %begin', followed

by a period. That is, the last symbol in the program is 'end.'.

10.13 Running a Pascal Program

Assume you have composed your program with a text editor on a CDC cemputer and

the code is in <p>. Assume further that you have already executed the commands

ATTACH,ROTH,CCLLIB, ID=CSPR.
LIBRARY,ROTH.

(you must execute these commands only once). Then the program in <p> may be run

with the commands

pc , p.
lgo.

-65-

q * S' --



Examples PASCAL

10.111 ExMples

10.14.1 Temperature Conversion

.- program ftoc(output);

f(. ftoc - fahrenheit to celsius conversion, -40If to 100f ')

var f,c: real; (f fahrenheit, celsius temperatures *)

begin
f := -40.0;
while f <= 100.0 do begin
a := 5.00(f - 32.0)/9.0;
writeln(f,c);
f := f + 5.0
end (*while')

end.

e .

---66

. .-.

-- 66-

?..§c *-?..'4 * * ~ .**.* . . . ** * * . -4



PASCAL Examples
10.14.2 Nearest Points Assume that the three coordinates of each point are

typed on a single line of <input>.

program near( input, output);

(0. near - find 2 of 10 points which are closest neighbors #)

var
x: array[l..10,1..31 of real; (0 points in space *)
oldd,newd: real; (* distances between points 0)
i,j,k,m,n: integer; (0 counters 0)

begin
for i := 1 to 10 do

for j := 1 to 3 do
read(x[i,j]);

(0 first distanoce from I to 2 4)
oldd := sqrt( sqr(x[1,11-x[2,1])

+ sqr(x[1,2]-x[2,2])
+ sqr(x[1,31-x[2,3) );

for i :=1 to 9 do
for j := i+1 to 10 do begin

i newd :=sqrt( sqr(x[i,1j-x[J,1])
* + sqr(x[i,23-x[J,2])

+ sqr(xti,31-x[J,3i) );

if newd <= oldd then begin (' found a new nearest neighbor*)
m := i;
n := J;
oldd := newd
end ('if')

end (0 for J ');
write " closest points are at ");
for i : 1 to 3 write(x[m,il);
for i : 1 to 3 write(x[n,ii);
writeln

end.

-67-

" '. ' ' € -".5"".--.. " /'i '..-€ 
,
" ** * * % * * .5 "" . """" 

"
*. 

"
-","' "" ' "" " - :.

" "



Examples PASCAL

10.111.3 Count the "A's

program counta( input,output );

var oh: char;
count: integer;

begin
count := 0;
while not eof do begin

read(ch);
if ch = 'A' then

count := count + 1
end(* while 0);

writeln(count)
end.

In Pascal, 'eof" is a Boolean function which tests for "end-of-file.'

* 1P

02 -68-

%o % 7



11. C

Blocks of statements in C are grouped with braces •{ and "}'. As of this writ-

ing, no C compiler exists for CDC computers; it is a language which lives on

many other brands, however. These include DEC's PDP-11/xx and VAX 11/7xx, IBM
machines of various sizes, and many microcomputers.

SC is a free-format language. That is, you may begin your code in any column.

It is a good idea to indent your code so that the logical structure of the pro-

gram is reflected by the layout of the text on a page. Blank lines are ignored
by C, so you may also use these to provide additional 'white space."

Comments may occur anywhere and may extend across line boundaries. The symbol
•'/" opens a comment, and the next occurrence of the symbol '/' closes a com-
ment.

11.1 Variable Names

C uses the 'reserved word' concept; i.e., there are a large number of words

which are special to C. Thus, in C programs, you may not name a variable 'if,'
'while,' 'break,' etc. A full list of the C reserved words is given in

*[Kern78].

. Only the first 8 characters in a name are significant. More may be used, how-
ever. A practical limit is 12 characters.

11.2 Boolean Expression

X and Y are variables of the same type.

X is greater than Y:

, X>Y

X is greater than or equal to Y:

X >= Y

X is equal to Y:

X == Y

X is not equal to Y:

;@ X 1= Y

X is less than Y:

x < Y

X is less than or equal to Y:

X <2 Y

-69-



Assignment Statement C

11.3 Assignment Statement

X = expression ;

-" Note that in C, statements are terminated with a semicolon, rather than joined
" as in Pascal (a subtle, but sometimes painful, difference).

11.41 Conditional

if (B) {
*- .; s i;
- S2;

) /0 end if 0/

11.5 Alternative

if (B) {
Sl;
S2;

else f
S3;
S4;
. / end if V/

70

4.

4.
O.

4-

dl -70-



C Multiple Choice

11.6 Multiple Choice

There are two ways to select from multiple possibilities: if ... else if's, or

the Switch.

11.6.1 if ... else if

if ( B1 )
Si;

else if ( B2 )
S2;

else if ( B3 )
S3;

else
Sn;

Indenting successive "else-if's is deemed by some to make the program text
easier to read.

11.6.2 Switch

switch ( I ) f
case LI: 51;
case L2: 32;
case L3: S3;

case Ln: Sn;
default: Sx;

} /*end switch*/

Choosing between the 'switch' and multiple 'if ... else if's is mostly a matter
of style, although the switch can be faster in some circumstances.

6.°

0- ,

|.-%i-

t-



While C

11.7 While

while (B) {

SI;
S2;

} I' end while 0/

11.8 Repeat-Until

do ( /* while B I/

S1;
S2;

} while (B);

where it is helpful to a reader to have the termination condition of the loop

presented in commentary on the Do line.

11.9 Determinate Iteration

C provides a generalized iteration scheme called the For. It has the form

for ( initialize; B; reinitialize ) {

Si;
S2;
}

which is the equivalent of

initialize;

while (B) {
Si;
S2;
reinitialize;

I

Note that the initialization and reinitialization steps need not necessarily be

strictly related to counting of discrete program iterations. The For may be
easier to understand than a While in some circumstances because it keeps all
terms which control a loop on a single 'line.'

-

-72-

A . - .. , , , , . - - , , .,", .. , " " . € ," " '' '



C Altered Loops

11.10 Altered Loops

11.10.1 Loop2 Exit Although any loop (While, Repeat-Until, Determinate) may be

'exit'ed, we illustrate with a While.

while (81)
Si;
if (B2)

break;

1/* end while *

11.10.2 Loop Redo Although any loov (While, Repeat-Until, Determinate) may be
re-do'ed, we illustrate with a While.

while (81)

if (82)
continue

/ I end while '

k
-V3-



C Summary C

11.11 C Summary

Conditional: if (B)
, S;

Alternative: if (B)
Si;

else

S2;

-" Multiple Choice: switch (I) of f if (El)

case Bi: Si; Si;

case B2: S2; (or) else if (B2)
case B3: S3; S2;

case B4: S4; else if (B3)
-a I S3;

else if (B4)
S4;

While: while (B)
S;

Repeat-Until: do
S

while (B);

Determinate: for(init; B; reinit)

5;

Loop exit: break

Loop redo: continue

-74-

• °

a I*~. * ** ~ * .a -

V ',*.t*'%* : %ia



C Program Header

11.12 Program Header

C is not yet available on CDC machines. On a UNIX system, the C program header
is

main ()

declaration of variable types
Note that the program must be closed with a right brace "} to match the opening

left brace of the program header.

11.13 Running a C Program

Assume you have composed your program with a text editor on a UNIX system and
the code is in <p.p>. Then the program in <p.c> may be run with the commands

cc p.c
a.out

.5

-75-

V4 '--;I 'y :";-:.'' .. '". ; . ¢ e .g -.... .,,.. . ._. .-- v --. .. -. . . . . , . .

' ' " . -'~ ' ". . " "" ; " "" ' ' "',- '- ., -



Examples C

11.14 Examples

I assume in the following examples that the function 'printf' is available to
provide output. Most UNIX systems provide it.

11.14.1 Temperature Conversion

/0. ftoc - fahrenheit to celsius conversion, -40f to 100f I/

main()

float f,c
-..

f = -40.0;
while ( f <= 100.0 ) {

c = 5.00(f - 32.0)/9.0;
printf("%4.Of %6.lf\n",f,e);
f f + 5.0;

_

iI  -76-

tA..,, ;. " .'''i' ?. .,. . .."=, -, - .', AX &, •' ,"AA r . ,";= .nd. * * - S . ... 
, -' ' " - , j' "



- C Examples

11.14.2 Nearest Points In this example, please note that you must provide the
*function "gtarray' (to read the values into the x array), and that the "sqrt"

function must be made available to your program by accessing the appropriate
system library. C doesn't have an exponentiation operator, either, so you must
either multiply the terms yourself (as I've done here) or provide a function to
do it.

/* near - find 2 of 10 points which are closest neighbors '1
main ()

float xrlOl[31; /* array of points V
float oldd,newd; /* distances between points /
int i,J,k,m,n; /* counters V

gtarray(x,10,3); / function to fill array "x';

you must provide this per
your operating system reqts. *

/* first distance: from i to 2 */
oldd = 0.0;
for(k 1; k <= 3; ++k )
oldd oldd + (xrll[k-xr2lkl)m(xE1lrkl-xfl[kl);

oldd = sqrt(oldd);

for(i 1; t <: q; ++t ) {

for(j 1+1; .1 <: 10; ++1 ) I

newd f.n;

ror(k 1; k <= 3,- + <1 )
newd: newd + (x[ilrkl-xrllrkl)*(xril[kl-xfi 1rkl);

newl = sqrt(newd);

if( newd <= oldd ) 1/* 'ound a new nearest neighbor *
m 1;
n .1;
oldd newd;

4

printf(" closest points are at \n");
printf ("%d %d %d\n",x[mlrll,x[ml[21,xrml3');
printf ("%d %d %d\n",x[nl11,x[nlr2],x[nlr31);

,.

-77-

Po



Examples C

11.14.3 Count the 'A's

/s. counta - count the "A's in input. 0/

main()

.int c,na;

.:.'.na = 0;
~while( (c=getchar()) 1= EO )

.-. if( a == 'A'
• + na;

printf("%d\n",na)

where "getchar' is a function which gets the next character from <input> and
puts it into the variable %a.' If <input> is at end of file, then 'getchar'
assigns a non-character value to c (a system dependent constant of 0 or -1).
avoid this issue by using the symbolic EOP.

M

-1.
°

'.°

°-5

-78-

% *1 5* del
. .55. 55, ./ .- 5'., . 5,,', .'-' ' , '.' ' -. .. . -,• , .. , , V *.,¢



12. FORTRAN77

Blocks of statements in FORTRAN77 are grouped only in the "if ... then else'
statement, since blocks are a new concept in FORTRAN. It is advisable to
"create' blocks of statements by using the FORTRAN77 do-nothing CONTINUE state-

P- ment.

FORTRAN77 requires that the text of a program be contained in columns 7 through
72. That is, you may begin your code in any column after column 6. It is a
good idea to indent your code so that the logical structure of the program is
reflected by the layout of the text on a page.

Comments are provided in a FORTRAN77 program by putting a %C" or '' in
. column 1.

Since all The Constructs are not available directly in FORTRAN77, you may find
it easier to use ratfor than this language.

12.1 Variable Names

Names of variables are limited to a maximum of six characters. Every variable
should be declared to be of a specific type and its purpose defined. This may
be done easily through the type definitions REAL, INTEGER, LOGITAL, MARACTeR,
COMPLEX, and DOUBLEPRECIStON. It is inadvisable to allow FORTRAN to type your
variables.

The type definitions may also be used to declare the dimensions of arrays, so
the DIMENSION statement is not needed in FORTRAN programs (see, for example, the
program in Section 12.14.2).

-.7

-yq

6'.



Boolean Expression FORTRAN77

12.2 Boolean Expression

X and Y are variables of the same type.

X is greater than Y:

X .GT. Y

X is greater than or equal to Y:

X .GE. Y

X is equal to Y:

X .EQ. Y

X is not equal to Y:

X.NE. Y

X is less than Y:

X .LT. Y

X is less than or equal to Y:

X .LE. Y

.17

-80-

" **,* -g * * *' --



FORTRA7 ssignment Sttement

FORTRAN77 Assignment Statement

12.3 Assignment Statement

X = expression

FORTRAN77 statements end at the end of a line. Long statements may be continued
for up to 19 additional lines by providing a non-blank, non-zero character in
column 6 of the continuation lines (columns 1 through 5 must be blank). Note
however, that long FORTRAN77 statements are like long sentences: they're hard to
read, hard to understand, and hard to correctl Strive for short statements,
even if it means inventing new variables to contain the results of intermediate
calculations.

12.4 Conditional

if( B ) then
SI
S2

endif

12.5 Alternative

if ( B ) then
S1
S2

else
S3
S4

endif

12.6 Multiple Choice

if ( B1 ) then
S1

else if B B2 ) then
S2

else if ( B3 ) then
S3

else
Sn

endif

-81-



While FORTRAN77

12.7 While

This construct must be simulated. Because a.reader may not immediately recog-
nize the construct, it should be annotated as a While. Note that FORTRAN77
forces you to express the Constructs in terms of transportation - "GOTO label"
is a rather indirect way to express a logical concept.

C while B
23000 if ( B ) then

Si
S2
goto 23000

endif
C end while

12.8 Repeat-Until

This construct must be simulated. Because a reader may not immediately recog-
nize the construct, it should be annotated as a Repeat-Until.

C repeat until B
23000 continue

Si
S2
if ( B goto 23000

12.9 Determinate Iteration

do 23000 I = JK,M
Si
32

23000 continue

J is the initial value of I, K is the terminal value of I, and M is the non-zero
increment of I. Note that if the initial condition satisfies the terminal con-
dition, the loop will not be executed.

-82-



FORTRAN77 Altered Loops

12.10 Altered Loops

*12.10.1 LopExit

Although any loop (While, Repeat-Until, Determinate) may be 'exit'ed, we illus-

trate with a While.

23000 if ( B1 ) then
S1
if ( 82 ) goto 23001
S2
goto 23000

endif
23001 continue

* 12.10.2 Loop Redo

Although any loop (While, Repeat-Until, Determinate) may be 're-do'ed, we illus-

trate with a While.

23000 if ( H1 ) then
SI

if ( 82 ) goto 23000
S2
goto 23000

endif

-p8.

,,

4

I



:.-4 . . .

FORTRAN77 Summary FORTRAN77

12.11 FORTRAN77 Summary

Conditional: if (B) then
S

• .-.. endif

Alternative: if (B) then
Si

else
S2

endif

Multiple Choice: if ( B1 ) then
SI

else if ( B2 ) then
S2

else if (13) then
S3

.9".ee-- else

Sn
endif

" While t  23000 if ( B ) then
-'. 1

S2
goto 23000

endif

Repeat-Until: 23000 continue
-> Si

S2

if ( B ) goto 23000

Determinate: do 23000 I = J,K,M
S1
S2

* 23000 continue

Loop Exit: goto label

. Loop Redo: goto label

-84-

-S . . V . * * * -



. FORTRAN77 Program Header

12.12 Program Header

The program header on CDC machines has the form

program name( filel, file2, ... )
declaration of variable types

*i 12.13 Running a FORTRAN7 Program

4Assume you have composed your program with a text editor on a CDC computer and
*" the code is in <p>. Assume further that you have already executed the commands

ATTACH,ROTH,CCLLIB,ID=CSPR.
LIBRARY,ROTH.

(you must execute these commands only once). Then the program in <p> may be run
with the command

vcqp.
abs.

(see [Roth83]).

4, -85

* 5'- . *. /* . ; : l. A.? .. .is A .. P ¢ , : ... . . ,



Examples 
FORTRAN77

12.14 Examples

12.14.1 Temperature Conversion

V.7. PROGRAM FTOC
C
C. FTOC - FAHRENHEIT TO CELSIUS CONVERSION, -40F TO 10OF
C
C F = FAHRENHEIT, C CELSIUS

REAL F,C
C

F = -4o.o
-- ' C WHILE( F <= 100)

1 IF(F .LE. 100.0) THEN
C = 5.00(F - 32.0)/9.0
PRINT ,pF,C
F = F+5.0
GOTO 1

ENDIF
C END WHILE

END

-8'6

°..

'._ ":

**- * -.o

* -. * * * *



FORTRAN77 
Examples

12.14.2 Nearest Points Assume that the three coordinates of each point, are
typed on a single line of <input>.

PROGRAM NEAR( INPUT, OUTPUT )
C
C. NEAR - FIND 2 OF 10 POINTS WHICH ARE CLOSEST NEIGHBORS

C X(10,3) IS THE ARRAY OF POINTS" C OLDD,NEWD ARE DISTANCES BETWEEN POINTS

CIJKMN ARE COUNTERS
C

REA X(10,3)X2,))2
C

-." ~READ (03

"-" ITGE IJ,,M1

C FRST DISTANCE: 1 TO 2
OLDD = SRT( (X(1,1)-X(2,1))**2

$ + (X(1,2)-X(2,2))**2
$ + (X(1,3)-X(2,3))**2)

DO2~M I 1

C

>'. IP1 = I + 1
[- DO I J = IP1, 10

NEWD = SRT( (X(I,1)-X(J,1))**2".$ + (X(l,2)-X(J,2))**2

$ + (X(1,3)-X(J,3)),12)
CN|EW MINIMUM FOUND?

IF( NEWTD .LE. OLDD )THEN

N. J
.- " OLDD = NEWD

.ENDIF
1 CONTINUE

•2 CONTINUE
I ,[:PRINT ,"CLOSEST POINTS ARE AT
.,' \"PRINT *, (X(M ,I),I=1q3), (X(N,I),T= I,1)
\. END

.8

4".~



Examples FORTRAN77

12.14.3 Count the 'A's Approach: assume that each line has it most 132 charac-
ters, and read an entire line at a time. Also assume that character variables
can be represented as integers (this works on CDC machines). If the line is
shorter than 132 characters, FORTRAN will act as if the nonexistent characters
were blanks. If the line is longer than 132 characters, the excess will be
(silently) truncated (perhaps not the best solution).

PROGRAM COUNTA

C. COUNT THE NUMBER OF 'A'S IN <INPUT>.

C
INTEGER COUNTI
CHARACTER LINE '132

COUNT =0
OPEN(UNIT-5 ,FILE= 'INPUT')

C WHILE NOT END OF FILE
1 READ(5,2,END=3) LINE

" 2 FORMAT(A132)
DO 4 I = 1, 132

IF(LINE(I:I) .EQ. 'A') THEN
COUNT - COUNT + 1

ENDIF
4 CONTINUE

GOTO 1
C END WHILE
3 CONTINUE

PRINT *, COUNT
END

* -88-



13. FORTRAN66

If there is any way to avoid writing programs in this language, you should take
it. One way which comes readily to mind is the alternative 'ratfor,' which pro-
duces FORTRAN66 but allows you to express your program in terms more nearly like
English. Note that the straight-forward application of FORTRAN66 costs you time
and effort because you must convolute your natural thought processes when you

-. write the program, and then again when you go looking for errors.

The concept of 'blocks of statements' does not exist in FORTRAN66. It is advis-
able to 'create' blocks of statements by using the FORTRAN66 do-nothing CONTINUE

statement.

- FORTRAN66 requires that the text of a program be contained in columns 7 through
72. That is, you may begin your code in any column after column 6. It is a
good idea to indent your code so that the logical structure of the program is
reflected by the layout of text on a page.

Comments are provided in a FORTRAN66 program by putting a 'C' in column 1.

13.1 Variable Names

.. Names of variables are limited to a maximum of six characters. Every variable

should be declared to be of a specific type and its purpose defined. This may
be done easily through the type definitions REAL, INTEGER, LOGICAL, COMPLEX,
DOUBLEPRECISION. It is inadvisable to let FORTRAN type your variables for you.

The type definitions may also be used to declare the dimensions of arrays, so
the DIMENSION statement is not needed in FORTRAN programs (see, for example, the
program in section 13.14.2).

.

o .

q -,.-

. 4.• o. . * * * * ~ * * ~ * * * * 4 * * 4 '

+'. ,*** *** ** ~~.**



AD-A147 964 FUNDAMENTALS OF COMPUTER PROGRAMMING FOR ENGINEERS(U) 2/2
DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT
CENTER BETHESDA MD P N ROTH OCT 84 DTNSRDC-84/862

UNCLASSIFIED F/G 5/9 NL

EEEEEEEEEEIhEE[EKE.IIIIIII

IIII'



,

Uii -. L
.

•L 6

&611 1. 11 -

1.511111 L4 1122.

M3O RT
N RD

111.0



Boolean Expression FORTRAN66

13.2 Boolean Expression

X and Y are variables of the same type.

X is greater than Y:

X .GT. Y

X is greater than or equal to Y:

X .GE. Y

X is equal to Y:

X .EQ. Y

X is not equal to Y:

X .NE. Y

X is less than Y:

X .LT. Y

X is less than or equal to Y:

X .LE. Y

13.3 Assignment Statement

,* X = expression

FORTRAN66 statements end at the end of a line. Long statements may be continued
for up to 19 additional lines by providing a non-blank, non-zero character in
column 6 of the continuation lines (columns 1 through 5 must be blank). Note
however, that long FORTRAN66 statements are like long sentences: they're hard to

. read, hard to understand, and hard to correct! Strive for short statements,
, even if it means inventing new variables to contain the results o intermediate
*calculations.

" -90-
4



* FORTRAN66 Conditional

*" 13.4 Conditional

In general, FORTRAN66 requires a 'reversal of thought' when expressing condi-
tional tests because the only control available to group statements is the GOTO.
Hence, to control several statements, the expression 'if R then' is expressed
'if NOT B goto'. The language also forces you to express logic in terms of
transportation - "GOTO label" is a rather indirect way to express a logical con-
cept. Compare the following with the definition of the Conditional Construct in
Sectizn 4.4 and in some of the other languages: sections 9.4, 10.4, and 11.4.

if(.not.(B))goto 23000
Si
S2

23000 continue

13.5 Alternative

if(.not.(B))goto 23000
C B IS TRUE

Si
32
goto 23001

23000 continue
C B IS FALSE

S3
S41

23001 continue

Commentary in FORTRAN66 are lines with the symbol 'C' in column 1. Because the
control structures are more difficult to understand in this language, they
should be more thoroughly commented than in other languages.

13.6 Multiple Choice

This form of multiple choice makes you assign a statement label and a condition
number to any of the choices you wish to make.

goto ( 1,2,3,...,n ), I
1 51

goto m
2 S2

goto m
3 S3

goto m

n Sn
m continue

-91-

L 2I.



While FORTRAN66

13.7 While

This construct must be simulated. Because someone who reads your program may

not immediately recognize the construct, it should be annotated as a While.

C WHILE B DO
23000 if(.not.(B))goto 23001

$1
S2
goto 23000

23001 continue

13.8 Repeat-Until

This construct must be simulated. Because a reader may not immediately recog-
nize the construct, it should be annotated as a Repeat-Until.

C REPEAT UNTIL (B)

?3000 continue
S1
S2

, 23001 if( .not.(B) )goto 23000

:.-.

.

,,-92-

1o'- 2."



FORTRAN66 Determinate Iteration

13.9 Determinate Iteration

13.9.1 Increasing Index

do 23000 I = JK,M
S1
S2

23000 continue

3 is the initial value of I, K is the terminal value of I, and M is the positive
increment of I. Note that this loop will be executed at least once (like the
Repeat-Until).

13.9.2 Decreasing Index A severe lack in FORTRAN66, this may be simulated with
the While loop. Old FORTRANers may prefer to simulate this with a Repeat-Until
so that the loop executes at least once and is an exact complement of the Do.

C LOOP FROM J DOWNTO K RY M
I=J

23000 if(I.lt.K)goto 23002
S1
S2
l=l-M
goto 23000

23002 continue

-93-

i *' **01 * **.....* .



4...7~.-7 . '%:1 .4- '4 0 - MI.- 777.4 4-7

Altered Loops FORTRAN66
13.10 Altered Loops

13.10.1 Loop Exit

Although any loop (While, Repeat-Until, Determinate) may be "exit'ed,' we illus-
trate with a While.

23000 if(.not.(B1))goto 23001
S1
if( B2 ) goto 23001
32
goto 23000

23001 continue

13.10.2 Loop Redo

Although any loop (While, Repeat-Until, Determinate) may be 're-do'ed, we illus-
trate with a While.

.. 23000 if(.not.(B1))goto 23001
#Si

if( B2 ) goto 23000
4 S2

23001 goto 23000
.23001 continue

-94

.S

'.

I * You can GOTO almost anywhere in a FORTRAN66 program!I



FORTRAN66 FORTRAN66 Sumary

13.11 FORTRAN66 Summary

Conditional: i(.not.(B))goto 23000
Si
S2

23000 continue

Alternative: if(.not.(B))goto 23000
Si
S2
goto 23001

23000 continue
S3
S14

23001 continue

Multiple Choice: goto ( 1,2,3,...,n ), I
1 Si

goto m
2 S2

goto m
3 S3

goto m

n Sn
m continue

While: 23000 if(.not.(B))goto 23001
Si
S2
goto 23000

23001 continue

Repeat-Until: 23000 continue
Si
S2
if ( .not.(B) ) goto 23000

Determinate: do 23000 I = JK,M
Si
S2

23000 continue

Loop Exit: goto label

Loop Redo: goto label

-95-



- 4*b~t- M=.747477- : 7 b7-

- Program Header FORTRAN66

13.12 Program Header

The FORTRAN66 program header on CDC machines.has the form

program name( filel, file2, ... )
declaration of variable types

13.13 Running a PORTRAN66 Program

Assume you have composed your program with a text editor on a CDC computer and
the code is in <p>. Assume further that you have already executed the commands

ATTACH, ROTH, CCLLIB,ID=CSPR.
LIBRARY,ROTH.

(you must execute these commands only once). Then the program in <p> may be run
with the command

-" fc,p.
abs.

(see rRoth83]).

.6
=--

4

~-96-



I~~ If _m MTV--  - ..-

FORTRAN66 Examples

13.14 Examples

13.14.1 Temperature Conversion

PROGRAM FTOC(OUTPUT)
C
C. FTOC - FAHRENHEIT TO CELSIUS CONVERSION, -40F TO 1OOF

C
C F = FAHRENHEIT9 C CELSIUS

REAL F,C

. F =-40.0
C WHILE F <= 100
1 IF(F .GT. 100.0) GOTO 2

C = 5.01(F - 32.0)/9
PRINT 0,F,C
F F + 5.0

.* GOTO 1
C END WHILE
2 CONTINUE

6END

.9
•

r|
9.4

-

...

.:

i
-qT-

9',. . , ....-. , .,N-.:. ,A.%. , ,, X i. .:& . ..... ' . .. . . % . . . .*. :



Examples FORTRAN66

13.14.2 Nearest Points Assume that the three coordinates of each point are
typed on a single line of <input>.

PROGRAM NEAR( INPUT, OUTPUT )
C

2. C. NEAR - FIND 2 OF 10 POINTS WHICH ARE CLOSEST NEIGHBORS

C
C X(10,3) IS THE ARRAY OF POINTS
C OLDD,NEWD ARE DISTANCES BETWEEN POINTS
C I,J,K,M,N ARE COUNTERS

REAL X(10,3)

REAL OLDD,NEWD
INTEGER I,J,K,M,N

C
READ *,((X(I,J),J=1,3),I=1,10)

C FIRST DISTANCE FROM 1 TO 2
OLDD = SQRT( (X(1,1)-X(2,1))*"2

$ + (X(1,2)-X(2,2))"02
$ + (X(1,3)-X(2,3))*"2)

C
. DO 2 1 = 1, 9

IP1 = I + 1
DO 1 J = IP1, 10

NEWD = SQRT( (X(I,1)-X(J,1))0*2
$ + (X(I,2)-X(J,2))**2
$ + (X(I,3)-X(J,3))*"2)

C NEW MINIMUM FOUND?
IF(.NOT.( NEWD .LE. OLDD )) GOTO 3

M= I
N= J
OLDD = NEWD

3 CONTINUE
1 CONTINUE
2 CONTINUE

PRINT *, CLOSEST POINTS ARE AT
PRINT I, (X(M,I),I=1,3), (X(NI),I=1,3)
END

r-9

5,.--98

.45

S'S

_. S*S . *** ~ . . . . .
-' . . . . . . . . .."



FORTRAN66 Examples

13.14.3 Count the 'A's Approach: assume that each line has at most 132 charac-
ters, and read an entire line at a time. A.so assume that character variables
can be represented as integers (this works on CDC machines). If the line is
shorter than 132 characters, FORTRAN will act as if the nonexistent characters
were blanks. If the line is longer than 132 characters, the excess will be
(silently) truncated (perhaps not the best solution).

PROGRAM COUNTA( INPUT,OUTPUTTAPE5=INPUT)
C
C. COUNT THE NUMBER OF 'A'S IN <INPUT>.
C

INTEGER COUNT, I, LINE(132)
.- INTEGER EOF

C
COUNT = 0
READ(5,1) (LINE(I),I=1,132)

1 FORMAT(1 ?? 1)
C WHILE NOT END OF FILE
2 IF( EOF(5) .NE. 0) GOTO 4

DO 3 1 = 1, 132
IF(LINE(I) .EQ. 'A') COUNT = COUNT + 1

3 CONTINUE
'. READ(5,1) (LINE(I),I=1,132)

GOTO 2
C END WHILE
4 CONTINUE

PRINT *, rOUNT
END

where we note that the integer function EOF is a CDCism.

9

%

' a,..%' '' '



- S W 4 ~ tt % . ~ ~ . ~K *72.

FORTRAN66

k 14. BASIC

There are many versions of BASIC. The following remarks therefore apply to
BASIC in a general sense; for specifics, you will need the BASIC manual for your
system.

The concept of 'blocks of statements' doesn't exist in BASIC. Most BASICs
prohibit the indentation of code to reflect the logical structure of a program;
thus BASIC programs are usually difficult to read and write.

Comiments are provided in a BASIC program by putting the string 'REM' (for
REMark) as the first entry following the line number. Because the control
structures are more difficult to understand in this language, they should be
more thoroughly commented than in other languages.'

Since few of the Constructs are available directly in BASIC, you may find it
easier to use any other language.

141.1 Variable Names

The names of BASIC variables may be one or two characters long. The first char-
acter must be a letter, and the second may be a letter or a numiber. Most BASICs
assumne all variables are of type REAL (i.e, they have fractional parts). Char-
acter type variables usually include the ' as the last character in the name

*Unfortunately, BASIC is often run on machines whose memory is too small to
hold both code and comments!

-100-



BASIC Boolean Expression

14.2 Boolean Expression

X and Y are variables of the same type.

X is greater than Y:

'., x>Y

X is greater than or equal to Y:

x >= Y

X is equal to Y:

X--Y

X is not equal to Y:

X <> Y

X is less than Y:

x <X Y

X is less than or equal to Y:

X <= Y

-101-



* A n S eB

-. Assignment Statement BASIC

14.3 Assignment Statement

LET X = expression

. BASIC statements end at the end-of-line. Continuation of statements is often
impossible, so you need to simplify expressions by inventing new variables to
hold the results of intermediate calculations.

14.4 Conditional

In general, BASIC requires a 'reversal of thought' when expressing conditional
tests. This is because the only command available to group statements is the
'(gotol linenumber'. In many implementations, the 'goto' is not supplied, but
understood. Hence, to control several statements, the expression 'if B then' is
expressed 'if NOT B linenumber'.

120 if not B then 150
130 S1
140 S2
150 rem ...continue

14.5 Alternative

10 if not B then 50
15 rem B IS TRUE
20 S1
30 S2
40 goto 80
50 rem B IS FALSE
60 S3
70 S4
80 rem continue

S

,'S

'S.'

.",

.

-102-

II



0"

BASIC Multiple Choice

14.6 Multiple Choice

The BASIC multiple choice forces you to assign a program line number (in the
proper numerical sequence) which corresponds to the condition number of the
choice you wish to make. This may be difficult to do when you are designing a
program because you can run out' of line numbers. Allow 'enough numbers.

10 on I goto ( 20,40,60,90 )
20 S1
30 goto 110
40 S2
50 goto 110
60 S3
70 goto 110
90 S4
100 goto 110
110 rem ...continue

14.7 While

This construct must be simulated.

5 rem WHILE B DO
10 if not B then 50
20 $1
30 S2
40 goto 10
50 rem continue

14.8 Repeat-Until

This construct must be simulated.

10 rem REPEAT UNTIL B
" "20 S1

30 S2
40 if not B then 10

14.9 Determinate Iteration

This construct is handled nicely in many BASICs.

10 for I J to K step M
203S1
305S2
40 next I

J is the initial value of I, K is the terminal value of I, and M is the non-zero
increment of I. Note that if the initial condition satisfies the terminal con-
dition, the loop will not be executed.

-103-

!..--



Altered Loops BASIC

14.10 Altered Loops

14.10.1 Loop Exits

Although any loop (While, Repeat-Until, Determinate) may be 'exit'ed (you can
GOTO just about anywhere in a BASIC program), we illustrate with a While.

10 if not B1 then 60
20 S1
30 if B2 then 60
40 S2
50 goto 10
60 rem continue

14.10.2 Loop Redo

Although any loop (While, Repeat-Until, Determinate) may be "re-do'ed, we illus-
trate with a While.

10 if not B1 then 60
20 31
30 if B2 then 10
40 S2
90 goto 10
60 rem continue

_10-4



BASIC BASIC Summary

14.11 BASIC Summary

Conditional: 10 if not B then 30
20 S
30

Alternative: 10 if not B then 40
20 S1
30 goto 50
40 S2
50 ...

Multiple Choice: 10 on I goto ( 20,40,60,...,n )
20 SI
30 goto m
40 S2
50 goto ,m...
n Sn

Dl ...

While: 10 if not B then 40

20 S
30 goto 10
40 ...

Repeat-Until: B0 t
20 if not B then 10

-- Determinate: 10 for I z J to K step M
" 20 S

30 next I

Loop Exit: goto linenumber

Loop Redo: goto linenumber

-105-

.. . ..



Program Header BASIC

14.12 Program Header

BASIC programs do not require a header on most systems. However, it is best to
use at least one comment line to identify the program.

V..: 14.13 Running a BASIC Program

Please refer to the manual for the system you have. BASIC programs are usually
entered from a keyboard or recalled from auxiliary storage (tape or floppy
disk). The sequence to run a program is usually something like

RUN programname

-106-

,-Q

° *'V*. '

° ~



BASIC Examples

1i4.14 Examples

14.141.1 Temperature Conversion

5 REM FAHRENHEIT TO CELSIUS CONVERSION, -40F TO 100F
10 FOR F = -40 TO 100 STEP 5
20 LET C = 50(F - 32)/9
30 PRINT FtC
40 NEXT F

t07

V.°

V.

A-107-



* Examples BASIC

..' 14.14.2 Nearest Points Assume that the three coordinates of each point are

contained in DATA statements (some points, are provided below). It is usually
easier to use the editing capabilities of the BASIC interpreter by supplying
DATA statements than it is to correctly type in 30 numbers 'interactively.'

10 REM NEAR - FIND 2 OF 10 POINTS WHICH ARE CLOSEST NEIGHBORS
20 REM X(10,3) IS THE ARRAY OF POINTS
30 REM C,D ARE DISTANCES BETWEEN POINTS
40 REM IJ,K,M,N ARE COUNTERS
50 DIM X(00,3)
65 REM ... GET POINTS FROM DATA STATEMENTS, LINES 280-370
70 FOR I = 1 TO 10

S80 FOR J = 1 TO 3
90 READ X(I,J)
100 NEXT J
110 NEXT I
111 REM ... FIRST DISTANCE FROM 1 TO 2

- 112C= 0
113 FOR K = 1 TO 3
114 C = C + (X(1,K)-X(2,K))^2
115 NEXT K

. 116 C = SQRT(C)
118 REM ... BEGIN LOOKING AT NEIGHBORS
120 FOR I = 1 TO 9
130 IPI = I + 1
140 FOR J = IP1 TO 10
150 D 0

- 160 FOR K = 1 TO 3
170 D = D + (X(I,K)-X(J,K))^2
180 NEXT K
190 D = SQRT(D)
195 REM... FOUND NEW MINIMUM?
200 IF D > C THEN 240

- 210 M = I
220 N = J

- 230 C = D
240 NEXT J
245 REM ... END FOR J = IP1 TO 10
250 NEXT I
255 REM ... END FOR I = 1 TO 9
260 PRINT " CLOSEST POINTS ARE AT ";
270 PRINT X(M,1),X(M,2),X(M,3),X(N,1),X(N,2),X(N,3)
280 DATA 10,20,30
290 DATA 21,31,41
300 DATA 32,42,52
310 DATA 10.3,11,27
320 DATA -27.006,23,4
330 DATA 22,9.3,26
340 DATA 1,2,2.1
350 DATA 3,31,20
360 DATA 3,31.1,-24
370 DATA 19,-21.07,3.001
380 END

-108-

.



BASIC Examples

14.14I.3 Count the 's The BASIC language recognizes the character data type.
However, the language does not have a standard way to read a file; data are usu-
ally embedded in the program itself. To access files on a system running BASIC,
one must somehow execute calls to the operating system through 'extensions, to
the language. Since these calls vary widely from vendor to vendor, I omit this
example.

.'~_109-



15. ACKNOWLEDGMENTS

My ideas about programming, pedagogy, and people have been honed by continual
arguments with Mel Haas, Jim McKee, Dave Somer, Kevin Laurent, Sharon Good, and

* Fredd Thrasher. I thank them for the good influence they have had on me and on
this work.

Tony Cincotta provided insight in formatting C code for legibility, and
corrected several errors in my first attempts at writing the chapter on C.

Stefan Zilliacus, Stan Wilner, Steve Walter, Joyce Toler, Claude Rizzo,
Bill Mynatt, and Fran Fortin pointed to portions of this text which were
irrelevant, obscure, inconsistent, or wrong, and helped me to make this document
clearer and smaller.

Many other people have had an impact on this document. Although I have not men-
tioned them by name (the list would be longer than this texti), I wish them to
please accept my thanks.

.o.*

, -110-



16. REFERENCES

Atki8O Atkinson, Laurence, Pascal Programming, John Wiley & Sons (1980).

Berz71 Berztiss, A T, Data Structures Theory and Practice, Academic Press

(1971).

Boud7l Boudreau, Ace, "Peeling the Yellow Tomato," Journal of the Oriental
Ecdysiast Society, Vol 17, No. 3 (1971).

Carr96 Carroll, Lewis, Through the Looking Glass, (1896).

Coop82 Cooper, Doug and Michael Clancy, Oh! Pascall, W W Norton & Co (1982).

Day7? Day, A Colin, FORTRAN Techniques with Special Reference to Non-Numerical
" Applications, Cambridge University Press (1972).

Jens74 Jensen, K and Wirth, W, Pascal User Manual and Report, Springer-Verlag
(1978).

Kell8l Kelly-Bootle, Stan, The Devil's DP Dictionary, McGraw-Hill (1981).

Kern76 Kernighan, B W and P J Plauger, Software Tools, Addison-Wesley (1976).

Kern78 Kernighan, B W & Ritchie, D W, The C Programming Language, Prentice
Hall (1978).

Myer79 Myers, Glenford J, The Art of Software Testing, John Wiley & Sons
(1979).

Roth82 Roth, Peter N, THE STRUCTURES DEPARTMENT INTERACTIVE CDC PRIMER, Enclo-
sure to Itr Ser 82-175-2 of 20 Jan 82.

" Roth83 Roth, Peter N, THE PROCEDURE BOOK: A Guide to Engineers Arl Scientists
Using CDC Computers, David Taylor Naval Ship Research and Development
Center Technical Memorandum 83-(1703).2-63, June (1983).

* Wirt73 Wirth, Niklaus, Systematic Programming: An Tntroduction, Prentice-Hall
(1973).

"- Wirt76 Wirth, Niklaus, Algorithms + Data Programs, Prentice-Hall (1q76).

Mw

.9-%

,-111"

' .4

3 '-.-1 -



17. GLOSSARY

algorithm a description of the steps necessary to perform a calcula-
tion. This is not to be confused with algorasm, which is
what a programmer has the first time his program runs.

code programs, or fragments of programs, are called 'code' because

they represent ideas in a form which can be read by a
machine.

compiler a program which translates some 'high-level' language (such
as Pascal, FORTRAN, Ada) into the equivalent instructions"
that a computer can understand.

computer an extremely gullible machine which often does exactly what
you tell it to do, rather than what you really want it to do.

down the state in which a computer is immune to user input.

English an obtuse language correctly spoken only by Edwin Newman and

William F Buckley, Jr.

error something which causes a program to not compile (sometimes

called a typographical error), or which causes a program to
be %not running.' Note that a program which never stops is

considered to be a 'not running' program.

execution jargon for 'run.'

function (a.) what a program is supposed to do. (b.) a program module
(e.g., the TANGENT function).

go verb describing the act of attempting to get a program to
run.

implementation how a program is put on a particular computer system.

interactive In an %interactive' computing environment, man and machine
have a dialog: man types command, mach'- A *'ie work, man
types command, etc. As opposed to %be* a, ± .ch man per-
forates regularly shaped pieces of pasteb. .d, man totes
pasteboards to machine, machine looks through holes, machine
prints what it mis-read, man totes pasteboard and paoer back
to perforator for another cycle.

library a special kind of file in which one may store programs, sub-
. routines, functions, and the like. Libraries make it easy

for you to use code developed by others.

line (a.) telephone connection to a computer. (b.) a series of

characters terminated by a "line-feed' character. (c.) the
entire contents of a computer punchcard.

-112-



GLOSSARY

load a CDC verb. To 'load' a program is to put a machine language
program into memory along with other modules from other
libraries. On other systems, this is known as 'binding' or
'linking' or "link-editing.'

loop a synonym for iteration.

macro a fragment of code which is 'expanded' by a program called a
macro-processor. Macros are used to extend the power of a
language. Simple examples: the arithmetic statement function
of FORTRAN66 and FORTRAN77, and the PARAMETER statement of
FORTRAN77.

memory is the place where the computer 'stores' data. Because read-
ing the computer memory doesn't destroy what is read, one can
perceive that the computer 'remembers' numbers. Memory is
often called 'prime store' in British publications.

operating system a computer program which 'runs the machine' and allows other
programs to run.

preprocessor a program which runs before the "real' work starts. For
example, a text editor is a preprocessor to ratfor, ratfor is
a preprocessor to FORTRAN, FORTRAN is a preprocessor to the
LOADER, the LOADER is a preprocessor to the SYSTEM, the SYS-
TEM is a preprocessor (and co-processor) of YOUR PROGRAM.

procedure (a.) a Pascal subroutine; (b.) a CCL program. (c.) a way of
doing things.

program a set of definitions, declarations, data, and algorithms
*.pormat ofpefiiion s duclarain rs da teandalgorths

which becomes a component of a computer.

recursion the expression of a function in terms of itself. E.g., the

factorial nI may be expressed recursively as

n! = n*(n-1)t with n > 0 and 1! = 1.

Of the languages discussed here, recursion is possible only
in C and Pascal.

register a computer component which can hold a data item.

robust software is said to be robust when it can withstand the
assault of any data without 'going down.'

run Execution of a program.

running Engineering programs are 'running' when they produce correct
output. Any other program is 'not running.' See also

error.

-113-



GLOSSARY

shell a program which provides the interactive interface between
man and modern computers.

* software the hard part of computing (as opposed to hardware, which is
the easy part).

-- store as a verb: to put data into the computer's memory. as a
noun: the place where data are kept. See also 'memory.'-

symbol a representation of a single thing; a symbol may be composed
of more than one character. For example, the Pascal symbols
used to group statements are 'begin' and 'end.'

system the computer program that allows other computer programs to
run. Also called 'executive' and 'monitor.'-

word a grouping of information on a machine which is convenient to
the manufacturer. On CDC equipment, a word is ten 6-bit

* .'.characters; on some DEC equipment, a word is four 8-bit
bytes.

-1114-



*M I- , -l - ;.. "-I

18. INDEX

abs 36, 37, 85, 96 ftoc 55, 66, 76
abstract 11 functions 37-40
Ada 46 implementation 13
Algol 2, 46 infinite 8

" alias 47 init 53, 74
ao 14 initialization 11, 23, 24,
arcade 46 72
arctangent 39, 40 initialize 52, 72
argument 41 interactive 44
assertion 14 interface 40
assign 6, 7, 24, 91, 103 interpreter 47, 108
axis 7 lgo 36, 37, 65
Bebugging 43 library 77
block 46 macro 45
boundaries 58, 69 mainframe 2, 3, 45
bounds 38 mathematicians 9
braces 23, 48, 58, 69 matrix 39
bracket 40 mnemonic 46
brokets 7 MOD 39
bug 43 Modula 47
calculate 43 modules 40, 41, 43
calculator 2, 47, 110 Next 28
calls 109 pc 65

V. Case 60 portability 45
cc 75 precision 8, 45
Cleanup 33-35 preprocessor 1'5
COBOL 47 procedure 36
coding 5 readable 5, 45
command 37, 54, 85, 96, recursion 45
102 redo 64, 74

compile 37, 42 reinit 74
compiler 41, 42, 46, 47, reinitialize 52, 72
69 robust 42

complex 8, 47 RPG 47
debug 43 rr 54
debugger 44 sequence 15, 23, 103, 106
debugging 1, 4, 45 sequential 15
declare 48, 58, 79, 89 Simscript 47
default 11, 71 Simula 47
downto 61, 64 skip 2, 4
dump 41 SNOBOL 47
editor 1, 36, 54, 65, 75, software 2, 3

* 85, 96 source 40, 45, 46
efficiency 5, 45 storage 106
eof 57, 68 store 6

* false 6, 14, 16, 62 string 46, 100
. fc 96 subprograms 41

fix 43 subroutine 38, 40, 41
float 76, 77 subscript 7, 31, 38
FORTH 47 subtypes 20
fragment 24, 40 switch 41, 71, 74

-115-



symbolic 78
symbols 6, 58
symptom 43
target 4, 5, 30, 48, 51
termination 50, 61, 72
terminator 26, 51

-~ tools 2, 3, 37
translate 1, 4, 30
tree 8

* understandability 45
i~ UNIX 8, 45, 49, 75, 76

vector 7

-116



INITIAL DISTRIBUTION

- Copies Copies

1 DNA 2 NUSC

* 1 SPSS 1 WR
1 WU

3 CNR
1 ONR-100 1 NUSC

I ONR-200

1 ONR-400 1 United States Naval Academy

4 NRL I NAVWARCOL

1 2800
1 4000 1 NOSC
1 5000
1 6000 1 NAVSHIPYD BREM/LIB

2 NAVMAT 1 NAVSHIPYD CHASN/LIB

1 PM 4
1 PM 23 1 NAVSHIPYD MARE/LIB

2 NAVAIR 1 NAVSHIPYD NORVA/LIB

1 JP-l
1 JP-2 I NAVSHIPYD PEARL/LIB

3 NAVFAC 1 NAVSHIPYD PHILA/LIB
1 04

1 NAVSHIPYD PTSMH/LIB
22 NAVSEA

1 05 1 NAVSHIPYD PTUGET/LIB

1 05B
1 05R I SUPSHIP GROTON

1 55X
1 55XI 1 SUPSHIP NPTNWS
1 55XIl
1 55X12 12 DTIC
1 55X13

-: 1 55Y 1 AFFTC-ENCSD

1 55Y2 1 Richard Black STOP 200

3 55Y21
3 55Y22 2 NBS/INST FOR COMPUTER SCI & TECH

3 55Y23 I Roger Martin

1 63R I Dolores Wallace

1 PMS 402
I PMS 406 NASA/LANGLEY

1 GWU CENTER

3 NDAC
1 NDAC 1 University of Akron/Stow Ohio

1 NDAC 40 Steven Arnold

1 NDAC 92
W 1 MIT

Dept of Mech Eng/Dr. K.-J. Bathe

117



0-

Copies Copies

1 University of Notre Dame 1 NKF Engineering Assoc/Vienna
Prof. Michael Katona Dr. M. Pakstys

1 George Washington Univ 1 CDC MNA02B
School of Eng & Applied Science Wayne Reynolds
Prof. H. Leibowitz

1 BBN Laboratories Inc
1 General Dynamics/Electric Boat/CT Gregg W. Schudel

System Technology/Structural
Programs

CENTER DISTRIBUTION
4 Weidlinger Associates Cpe oe Nm

1 Lockheed Missiles & Space Co, Inc 1 004.1 J. Moton
Dr. David Bushnell 1 004.1 D. Hibbert

1 Rock Island Arsenal 1 012.2 B. Nakonechny

Thomas Crane 1 012.21 J. Wilson

1 Grumman Data System Corp. 1 04
Rolf Gaeding

1 12
3 Bolt Beranek & Newman Inc./

New London CT/V. Godino 1 15

1 Bell Laboratories 30 1509

Mel Haas 1 1568 Dr. W. McCreight
1 1568 L. Motter

1 Structural Dyn Res Corp
Steven G. Harris 1 16

1 Texas Instruments/Austin TX 1 17 W.W. Murray
Warren Hunt-i1 1702

1 Duke Laboratory 1 1703.1 A. Wilner
Thomas J. Langan 100 1703.2 P. Roth

I United States Geological Survey 3 1706
Kevin Laurent...- 30 172

1 INFOtek 20 173
Charles Maiorana 25 174

S1 Ingalls Shipbuilding/Ship 1 175 J. Englehardt
Sys Sur/M.S. McGowan 1 175 F. Fortin

1 175 M. Hoffman
1 Martin Marietta Data System 1 175 S. Walter

Gene Nutt 1 175 S. Zilliacus

17 175

12 177

118

i,



Copies Code Name

1 18

1 1843 R. Van Eseltine
1 1843 M. Marquardt

1 1890 G. Gray
1 1890 W. Mynatt

20 1892 J. Strickland
1 1892 S. Wilner
1 1892 S. Good
1 1892 D. Sommer
1 1892 L. Minor

1 19

" 1 1936 J. Allender

1 27

1 28

1 6080 B. Pierce

10 5211 Reports Distribution

1 522.1 TIC (C) + 1 (m)
1 522.1 TIC (A) + 1 (m)

2 5231 Office Service (A)

11

119




